Hassan El-Ramady , József Prokisch , Daniella Sári , Abhishek Singh , Karen Ghazaryan , Vishnu D. Rajput , Eric C. Brevik
{"title":"土壤系统中的纳米技术:实现可持续管理的生态方法","authors":"Hassan El-Ramady , József Prokisch , Daniella Sári , Abhishek Singh , Karen Ghazaryan , Vishnu D. Rajput , Eric C. Brevik","doi":"10.1016/j.apsoil.2024.105669","DOIUrl":null,"url":null,"abstract":"<div><div>Soil ecology is significant in agroecosystems due to its influence on numerous environmental components, including soil, water, air, fauna, flora, and human health. The soil system has a substantial history with nanotechnology, beginning with the recognition that soil itself is considered a nanosystems, as components such as clays, organic matter, and oxides found in soil can be classified within the nanoparticle range. From this perspective, nanotechnology in the soil system is a long-established topic that requires reevaluation within the framework of contemporary nanotechnology-based knowledge. Nano-farming is gaining increasing attention and has ecological consequences for the soil system. This review focuses on nano-soil ecology through selected issues, including nano-remediation for soil quality, soil nano-fertilization to improve crop growth, nano-crop protection, nano-management of agro-wastes, and the potential for nano-toxicity in soil. Expected challenges facing sustainable nanotechnology-based farming and the global farming community were also highlighted, including soil nanoparticle-associated toxicity and its impacts on soil microbiota, plants, and others, such as humans, that depend on the soil system. The review confirmed that sustainable nanotechnology-based farming development must consider the impact of nanomanagement on potential toxicity in the soil ecological system. It was concluded that nanotechnology has shown promise in improving almost all aspects of the agricultural system, from pre-planting treatments to packaging and shipping. However, several urgent questions regarding nanotechnology-based farming remain. These include the following: What practices or regulations are needed to avoid nanotoxicity that would negatively affect the soil ecosystem? What are the expected obstacles to an agrotechnological revolution based on nanotechnology? What are the expected toxic effects of various nano-compounds on plants, animals, and soil microbes?</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"204 ","pages":"Article 105669"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanotechnology in the soil system: An ecological approach towards sustainable management\",\"authors\":\"Hassan El-Ramady , József Prokisch , Daniella Sári , Abhishek Singh , Karen Ghazaryan , Vishnu D. Rajput , Eric C. Brevik\",\"doi\":\"10.1016/j.apsoil.2024.105669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil ecology is significant in agroecosystems due to its influence on numerous environmental components, including soil, water, air, fauna, flora, and human health. The soil system has a substantial history with nanotechnology, beginning with the recognition that soil itself is considered a nanosystems, as components such as clays, organic matter, and oxides found in soil can be classified within the nanoparticle range. From this perspective, nanotechnology in the soil system is a long-established topic that requires reevaluation within the framework of contemporary nanotechnology-based knowledge. Nano-farming is gaining increasing attention and has ecological consequences for the soil system. This review focuses on nano-soil ecology through selected issues, including nano-remediation for soil quality, soil nano-fertilization to improve crop growth, nano-crop protection, nano-management of agro-wastes, and the potential for nano-toxicity in soil. Expected challenges facing sustainable nanotechnology-based farming and the global farming community were also highlighted, including soil nanoparticle-associated toxicity and its impacts on soil microbiota, plants, and others, such as humans, that depend on the soil system. The review confirmed that sustainable nanotechnology-based farming development must consider the impact of nanomanagement on potential toxicity in the soil ecological system. It was concluded that nanotechnology has shown promise in improving almost all aspects of the agricultural system, from pre-planting treatments to packaging and shipping. However, several urgent questions regarding nanotechnology-based farming remain. These include the following: What practices or regulations are needed to avoid nanotoxicity that would negatively affect the soil ecosystem? What are the expected obstacles to an agrotechnological revolution based on nanotechnology? What are the expected toxic effects of various nano-compounds on plants, animals, and soil microbes?</div></div>\",\"PeriodicalId\":8099,\"journal\":{\"name\":\"Applied Soil Ecology\",\"volume\":\"204 \",\"pages\":\"Article 105669\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soil Ecology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0929139324004001\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139324004001","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Nanotechnology in the soil system: An ecological approach towards sustainable management
Soil ecology is significant in agroecosystems due to its influence on numerous environmental components, including soil, water, air, fauna, flora, and human health. The soil system has a substantial history with nanotechnology, beginning with the recognition that soil itself is considered a nanosystems, as components such as clays, organic matter, and oxides found in soil can be classified within the nanoparticle range. From this perspective, nanotechnology in the soil system is a long-established topic that requires reevaluation within the framework of contemporary nanotechnology-based knowledge. Nano-farming is gaining increasing attention and has ecological consequences for the soil system. This review focuses on nano-soil ecology through selected issues, including nano-remediation for soil quality, soil nano-fertilization to improve crop growth, nano-crop protection, nano-management of agro-wastes, and the potential for nano-toxicity in soil. Expected challenges facing sustainable nanotechnology-based farming and the global farming community were also highlighted, including soil nanoparticle-associated toxicity and its impacts on soil microbiota, plants, and others, such as humans, that depend on the soil system. The review confirmed that sustainable nanotechnology-based farming development must consider the impact of nanomanagement on potential toxicity in the soil ecological system. It was concluded that nanotechnology has shown promise in improving almost all aspects of the agricultural system, from pre-planting treatments to packaging and shipping. However, several urgent questions regarding nanotechnology-based farming remain. These include the following: What practices or regulations are needed to avoid nanotoxicity that would negatively affect the soil ecosystem? What are the expected obstacles to an agrotechnological revolution based on nanotechnology? What are the expected toxic effects of various nano-compounds on plants, animals, and soil microbes?
期刊介绍:
Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.