最优和近似最优局部可修复代码的一些新构造

IF 1.2 3区 数学 Q1 MATHEMATICS
Varsha Chauhan, Anuradha Sharma
{"title":"最优和近似最优局部可修复代码的一些新构造","authors":"Varsha Chauhan,&nbsp;Anuradha Sharma","doi":"10.1016/j.ffa.2024.102518","DOIUrl":null,"url":null,"abstract":"<div><div>Additive codes over finite fields are natural extensions of linear codes and are useful in constructing quantum error-correcting codes. In this paper, we first study the locality properties of additive MDS codes over finite fields whose dual codes are also MDS. We further provide a method to construct optimal and almost optimal LRCs with new parameters belonging to the family of additive codes, which are not MDS. More precisely, for an integer <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>2</mn></math></span> and a prime power <em>q</em>, we provide a method to construct optimal and almost optimal <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-additive LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msub></math></span> with locality <em>r</em> that relies on the existence of certain special polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, which we shall refer to as <span><math><mo>(</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, (note that <span><math><mo>(</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> coincide with <em>r</em>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> when <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>). We also derive sufficient conditions under which <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-additive LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msub></math></span> constructed using the aforementioned method are optimal. We further provide four general methods to construct <span><math><mo>(</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, which give rise to several classes of optimal and almost optimal LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msub></math></span> with locality <em>r</em>. To illustrate these results, we list several optimal LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msub></math></span> with new parameters. Finally, we consider the case <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and obtain some new <em>r</em>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, which give rise to a construction of optimal linear LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> with locality <em>r</em>. We illustrate this result by listing several optimal linear LRCs over smaller finite fields compared to the previously known LRCs with the same parameters.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some new constructions of optimal and almost optimal locally repairable codes\",\"authors\":\"Varsha Chauhan,&nbsp;Anuradha Sharma\",\"doi\":\"10.1016/j.ffa.2024.102518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Additive codes over finite fields are natural extensions of linear codes and are useful in constructing quantum error-correcting codes. In this paper, we first study the locality properties of additive MDS codes over finite fields whose dual codes are also MDS. We further provide a method to construct optimal and almost optimal LRCs with new parameters belonging to the family of additive codes, which are not MDS. More precisely, for an integer <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>2</mn></math></span> and a prime power <em>q</em>, we provide a method to construct optimal and almost optimal <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-additive LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msub></math></span> with locality <em>r</em> that relies on the existence of certain special polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, which we shall refer to as <span><math><mo>(</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, (note that <span><math><mo>(</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> coincide with <em>r</em>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> when <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>). We also derive sufficient conditions under which <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-additive LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msub></math></span> constructed using the aforementioned method are optimal. We further provide four general methods to construct <span><math><mo>(</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, which give rise to several classes of optimal and almost optimal LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msub></math></span> with locality <em>r</em>. To illustrate these results, we list several optimal LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup></mrow></msub></math></span> with new parameters. Finally, we consider the case <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and obtain some new <em>r</em>-good polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, which give rise to a construction of optimal linear LRCs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> with locality <em>r</em>. We illustrate this result by listing several optimal linear LRCs over smaller finite fields compared to the previously known LRCs with the same parameters.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001576\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001576","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

有限域上的加法码是线性码的自然扩展,在构建量子纠错码时非常有用。在本文中,我们首先研究了有限域上加法 MDS 码的局部性特性,其对偶码也是 MDS。我们进一步提供了一种方法,用属于非 MDS 的加法码系列的新参数来构造最优和几乎最优的 LRC。更确切地说,对于整数 m0≥2 和素数幂 q,我们提供了一种方法来构造 Fqm0 上具有局部性 r 的最优和近似最优 Fq 附加 LRC,这种方法依赖于 Fq 上某些特殊多项式的存在,我们将其称为 Fq 上的(r,m0)-好多项式(注意,当 m0=1 时,Fq 上的(r,m0)-好多项式与 Fq 上的(r-好多项式)重合)。我们还推导出充分条件,在这些条件下,用上述方法构造的 Fq 上的 Fq-additive LRC 是最优的。为了说明这些结果,我们列出了几个带有新参数的 Fqm0 上最优 LRC。最后,我们考虑了 m0=1 的情况,得到了 Fq 上一些新的 r-good 多项式,从而构建了具有局部性 r 的 Fq 上最优线性 LRC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some new constructions of optimal and almost optimal locally repairable codes
Additive codes over finite fields are natural extensions of linear codes and are useful in constructing quantum error-correcting codes. In this paper, we first study the locality properties of additive MDS codes over finite fields whose dual codes are also MDS. We further provide a method to construct optimal and almost optimal LRCs with new parameters belonging to the family of additive codes, which are not MDS. More precisely, for an integer m02 and a prime power q, we provide a method to construct optimal and almost optimal Fq-additive LRCs over Fqm0 with locality r that relies on the existence of certain special polynomials over Fq, which we shall refer to as (r,m0)-good polynomials over Fq, (note that (r,m0)-good polynomials over Fq coincide with r-good polynomials over Fq when m0=1). We also derive sufficient conditions under which Fq-additive LRCs over Fqm0 constructed using the aforementioned method are optimal. We further provide four general methods to construct (r,m0)-good polynomials over Fq, which give rise to several classes of optimal and almost optimal LRCs over Fqm0 with locality r. To illustrate these results, we list several optimal LRCs over Fqm0 with new parameters. Finally, we consider the case m0=1 and obtain some new r-good polynomials over Fq, which give rise to a construction of optimal linear LRCs over Fq with locality r. We illustrate this result by listing several optimal linear LRCs over smaller finite fields compared to the previously known LRCs with the same parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信