借助循环多项式的循环局部可恢复液晶编码

IF 1.2 3区 数学 Q1 MATHEMATICS
Anuj Kumar Bhagat, Ritumoni Sarma
{"title":"借助循环多项式的循环局部可恢复液晶编码","authors":"Anuj Kumar Bhagat,&nbsp;Ritumoni Sarma","doi":"10.1016/j.ffa.2024.102519","DOIUrl":null,"url":null,"abstract":"<div><div>This article explores two families of cyclic codes over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> of length <em>n</em> denoted by <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span>, which are generated by the <em>n</em>-th cyclotomic polynomial <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and the polynomial <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, respectively. We find formulae for the distance of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> for each <span><math><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span> and conjecture formulae for the distance of their (Euclidean) duals. We prove the conjecture when <em>n</em> is a product of at most two distinct prime powers. Moreover, we show that all these codes are LCD codes, and several subfamilies are both <em>r</em>-optimal and <em>d</em>-optimal locally recoverable codes.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102519"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic locally recoverable LCD codes with the help of cyclotomic polynomials\",\"authors\":\"Anuj Kumar Bhagat,&nbsp;Ritumoni Sarma\",\"doi\":\"10.1016/j.ffa.2024.102519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article explores two families of cyclic codes over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> of length <em>n</em> denoted by <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span>, which are generated by the <em>n</em>-th cyclotomic polynomial <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and the polynomial <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, respectively. We find formulae for the distance of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> for each <span><math><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span> and conjecture formulae for the distance of their (Euclidean) duals. We prove the conjecture when <em>n</em> is a product of at most two distinct prime powers. Moreover, we show that all these codes are LCD codes, and several subfamilies are both <em>r</em>-optimal and <em>d</em>-optimal locally recoverable codes.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"101 \",\"pages\":\"Article 102519\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001588\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001588","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了长度为 n 的 Fq 上的两个循环码族,分别用 Cn 和 Cn,1 表示,它们分别由 n 次循环多项式 Qn(x) 和多项式 Qn(x)Q1(x) 生成。我们找到了每个 n>1 的 Cn 和 Cn,1 的距离公式,并猜想了它们(欧几里得)对偶的距离公式。当 n 是最多两个不同质幂的乘积时,我们证明了猜想。此外,我们还证明了所有这些编码都是 LCD 编码,而且有几个子系列既是 r-最优编码,也是 d-最优局部可恢复编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic locally recoverable LCD codes with the help of cyclotomic polynomials
This article explores two families of cyclic codes over Fq of length n denoted by Cn and Cn,1, which are generated by the n-th cyclotomic polynomial Qn(x) and the polynomial Qn(x)Q1(x), respectively. We find formulae for the distance of Cn and Cn,1 for each n>1 and conjecture formulae for the distance of their (Euclidean) duals. We prove the conjecture when n is a product of at most two distinct prime powers. Moreover, we show that all these codes are LCD codes, and several subfamilies are both r-optimal and d-optimal locally recoverable codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信