镍催化剂在超临界乙醇中催化丝兰水热液化成富含碳氢化合物的生物油

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS
Yaoting Lin, Wei Zhou
{"title":"镍催化剂在超临界乙醇中催化丝兰水热液化成富含碳氢化合物的生物油","authors":"Yaoting Lin,&nbsp;Wei Zhou","doi":"10.1016/j.joei.2024.101826","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrothermal liquefaction (HTL) is one of the most promising thermochemical techniques for converting wet biomass into crude oil-like products (bio-oil). In this study, Catalytic hydrothermal liquefaction of <em>Azolla filiculoides</em> (AZ) was performed over a various loading of nickel (Ni) on magnesium oxide (MgO) catalyst for the higher and quality bio-oil production. The key operating parameters such as temperature, reaction holding time, amount of Ni on MgO supports catalyst, and reaction solvents were investigated in the presence of a hydrogen environment. There was a 12.8 wt% increase in bio-oil yield and a 6.3 wt% decrease in biochar yield with addition of 15 wt% Ni catalysts compared to the non-catalytic reaction bio-oil yield (44.0 wt%). Results confirmed the highest total bio-oil yield of 56.8 wt% was attained at 280 °C with the catalyst amount of 15 wt% at a residence time of 45 min. Gas chromatography-mass spectrometry (GC-MS), FT-IR, CHNS, TGA, and NMR analyses were performed on the bio-oil, identifying 32.8 % long-chain hydrocarbons (C<sub>12</sub>-C<sub>16</sub>) along with small amounts of alcohols, alkanes, and esters. The boiling point distribution revealed that bio-oil produced using the Ni/MgO catalyst contained a significantly higher proportion of diesel-range hydrocarbons (42.4 %). Furthermore, the bio-oil yield under ethanol solvent and Ni catalysts showed higher heating value (HHV) 42.2 MJ/kg. Overall in the presence of Ni hydrogenation efficient catalysts on MgO in the liquefaction reaction promoted the deoxygenation and hydrogenation reaction.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101826"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic hydrothermal liquefaction of Azolla filiculoides into hydrocarbon rich bio-oil over a nickel catalyst in supercritical ethanol\",\"authors\":\"Yaoting Lin,&nbsp;Wei Zhou\",\"doi\":\"10.1016/j.joei.2024.101826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrothermal liquefaction (HTL) is one of the most promising thermochemical techniques for converting wet biomass into crude oil-like products (bio-oil). In this study, Catalytic hydrothermal liquefaction of <em>Azolla filiculoides</em> (AZ) was performed over a various loading of nickel (Ni) on magnesium oxide (MgO) catalyst for the higher and quality bio-oil production. The key operating parameters such as temperature, reaction holding time, amount of Ni on MgO supports catalyst, and reaction solvents were investigated in the presence of a hydrogen environment. There was a 12.8 wt% increase in bio-oil yield and a 6.3 wt% decrease in biochar yield with addition of 15 wt% Ni catalysts compared to the non-catalytic reaction bio-oil yield (44.0 wt%). Results confirmed the highest total bio-oil yield of 56.8 wt% was attained at 280 °C with the catalyst amount of 15 wt% at a residence time of 45 min. Gas chromatography-mass spectrometry (GC-MS), FT-IR, CHNS, TGA, and NMR analyses were performed on the bio-oil, identifying 32.8 % long-chain hydrocarbons (C<sub>12</sub>-C<sub>16</sub>) along with small amounts of alcohols, alkanes, and esters. The boiling point distribution revealed that bio-oil produced using the Ni/MgO catalyst contained a significantly higher proportion of diesel-range hydrocarbons (42.4 %). Furthermore, the bio-oil yield under ethanol solvent and Ni catalysts showed higher heating value (HHV) 42.2 MJ/kg. Overall in the presence of Ni hydrogenation efficient catalysts on MgO in the liquefaction reaction promoted the deoxygenation and hydrogenation reaction.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"117 \",\"pages\":\"Article 101826\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124003040\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003040","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

水热液化(HTL)是将湿生物质转化为类原油产品(生物油)的最有前途的热化学技术之一。在这项研究中,为了生产出更高质量的生物油,在氧化镁(MgO)催化剂上添加了不同含量的镍(Ni),对丝兰(AZ)进行了催化水热液化。在氢气环境下,对温度、反应保持时间、氧化镁载体催化剂上的镍含量和反应溶剂等关键操作参数进行了研究。与非催化反应生物油产量(44.0 wt%)相比,添加 15 wt% Ni 催化剂后,生物油产量增加了 12.8 wt%,生物炭产量减少了 6.3 wt%。结果证实,在 280 °C 温度下,催化剂用量为 15 wt%,停留时间为 45 分钟时,生物油总产量最高,达到 56.8 wt%。对生物油进行了气相色谱-质谱联用仪 (GC-MS)、傅立叶变换红外光谱 (FT-IR)、碳氢化合物分析仪 (CHNS)、热重分析仪 (TGA) 和核磁共振分析,确定了 32.8% 的长链碳氢化合物(C12-C16)以及少量的醇、烷和酯。沸点分布显示,使用 Ni/MgO 催化剂生产的生物油中柴油级碳氢化合物的比例明显更高(42.4%)。此外,在乙醇溶剂和镍催化剂作用下产生的生物油显示出更高的热值(HHV)42.2 MJ/kg。总之,在液化反应中,氧化镁上的镍加氢高效催化剂促进了脱氧和加氢反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Catalytic hydrothermal liquefaction of Azolla filiculoides into hydrocarbon rich bio-oil over a nickel catalyst in supercritical ethanol

Catalytic hydrothermal liquefaction of Azolla filiculoides into hydrocarbon rich bio-oil over a nickel catalyst in supercritical ethanol
Hydrothermal liquefaction (HTL) is one of the most promising thermochemical techniques for converting wet biomass into crude oil-like products (bio-oil). In this study, Catalytic hydrothermal liquefaction of Azolla filiculoides (AZ) was performed over a various loading of nickel (Ni) on magnesium oxide (MgO) catalyst for the higher and quality bio-oil production. The key operating parameters such as temperature, reaction holding time, amount of Ni on MgO supports catalyst, and reaction solvents were investigated in the presence of a hydrogen environment. There was a 12.8 wt% increase in bio-oil yield and a 6.3 wt% decrease in biochar yield with addition of 15 wt% Ni catalysts compared to the non-catalytic reaction bio-oil yield (44.0 wt%). Results confirmed the highest total bio-oil yield of 56.8 wt% was attained at 280 °C with the catalyst amount of 15 wt% at a residence time of 45 min. Gas chromatography-mass spectrometry (GC-MS), FT-IR, CHNS, TGA, and NMR analyses were performed on the bio-oil, identifying 32.8 % long-chain hydrocarbons (C12-C16) along with small amounts of alcohols, alkanes, and esters. The boiling point distribution revealed that bio-oil produced using the Ni/MgO catalyst contained a significantly higher proportion of diesel-range hydrocarbons (42.4 %). Furthermore, the bio-oil yield under ethanol solvent and Ni catalysts showed higher heating value (HHV) 42.2 MJ/kg. Overall in the presence of Ni hydrogenation efficient catalysts on MgO in the liquefaction reaction promoted the deoxygenation and hydrogenation reaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信