用于高效吸附和分离 C2H2/CO2 的簇聚合触发的异构超微孔铁-声烟酸框架

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zhang-Lei Zhong, Jiao Lei, Hai-Peng Li, Shu-Cong Fan, Wenyu Yuan, Ying Wang and Quan-Guo Zhai*, 
{"title":"用于高效吸附和分离 C2H2/CO2 的簇聚合触发的异构超微孔铁-声烟酸框架","authors":"Zhang-Lei Zhong,&nbsp;Jiao Lei,&nbsp;Hai-Peng Li,&nbsp;Shu-Cong Fan,&nbsp;Wenyu Yuan,&nbsp;Ying Wang and Quan-Guo Zhai*,&nbsp;","doi":"10.1021/acs.cgd.4c0089210.1021/acs.cgd.4c00892","DOIUrl":null,"url":null,"abstract":"<p >Because of the similar physical properties of acetylene (C<sub>2</sub>H<sub>2</sub>) and carbon dioxide (CO<sub>2</sub>), their efficient separation remains challenging in industry. In this work, two isomeric ultra-microporous Fe-isonicotinate frameworks (SNNU-131 and SNNU-132) were prepared by a cluster-aggregation strategy, and both show prominent acetylene and carbon dioxide adsorption and separation ability. The linear trinuclear cluster [Fe<sup>III</sup><sub>2</sub>Fe<sup>II</sup>(μ<sub>2</sub>-O)<sub>2</sub>(COO)<sub>4</sub>] and its dimer, hexanuclear cluster [Fe<sup>III</sup><sub>4</sub>Fe<sup>II</sup><sub>2</sub>(μ<sub>3</sub>-O)<sub>2</sub>(μ<sub>2</sub>-O)<sub>2</sub>(COO)<sub>8</sub>] were extended by isonicotinic acid linkers to generate two 8-connected supramolecular isomers with typical <i>bcu</i> and <i>hex</i> topology, respectively. Thanks to the existence of 1D quadrilateral channels with crossing size of about 7 Å and open metal sites from linear trinuclear clusters, SNNU-131 has better acetylene and carbon dioxide adsorption capacities of 88.5 and 49.9 cm<sup>3</sup> g<sup>–1</sup> at 298 K and 1 bar. On the other hand, SNNU-132 with smaller triangular channels shows higher C<sub>2</sub>H<sub>2</sub>/CO<sub>2</sub> ideal adsorbed solution theory (IAST) selectivity values of 3.54–4.44, as well as a longer breakthrough interval time of 30 min g<sup>–1</sup> at 298 K and 1 bar. The preferred adsorption sites and density distributions of C<sub>2</sub>H<sub>2</sub> and CO<sub>2</sub> molecules in these two metal–organic frameworks (MOFs) were further calculated by the Grand Canonical Monte Carlo (GCMC) simulations to understand their adsorption and separation performance.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster-Aggregation-Triggered Isomeric Ultra-Microporous Fe-Isonicotinate Frameworks for Efficient C2H2/CO2 Adsorption and Separation\",\"authors\":\"Zhang-Lei Zhong,&nbsp;Jiao Lei,&nbsp;Hai-Peng Li,&nbsp;Shu-Cong Fan,&nbsp;Wenyu Yuan,&nbsp;Ying Wang and Quan-Guo Zhai*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.4c0089210.1021/acs.cgd.4c00892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Because of the similar physical properties of acetylene (C<sub>2</sub>H<sub>2</sub>) and carbon dioxide (CO<sub>2</sub>), their efficient separation remains challenging in industry. In this work, two isomeric ultra-microporous Fe-isonicotinate frameworks (SNNU-131 and SNNU-132) were prepared by a cluster-aggregation strategy, and both show prominent acetylene and carbon dioxide adsorption and separation ability. The linear trinuclear cluster [Fe<sup>III</sup><sub>2</sub>Fe<sup>II</sup>(μ<sub>2</sub>-O)<sub>2</sub>(COO)<sub>4</sub>] and its dimer, hexanuclear cluster [Fe<sup>III</sup><sub>4</sub>Fe<sup>II</sup><sub>2</sub>(μ<sub>3</sub>-O)<sub>2</sub>(μ<sub>2</sub>-O)<sub>2</sub>(COO)<sub>8</sub>] were extended by isonicotinic acid linkers to generate two 8-connected supramolecular isomers with typical <i>bcu</i> and <i>hex</i> topology, respectively. Thanks to the existence of 1D quadrilateral channels with crossing size of about 7 Å and open metal sites from linear trinuclear clusters, SNNU-131 has better acetylene and carbon dioxide adsorption capacities of 88.5 and 49.9 cm<sup>3</sup> g<sup>–1</sup> at 298 K and 1 bar. On the other hand, SNNU-132 with smaller triangular channels shows higher C<sub>2</sub>H<sub>2</sub>/CO<sub>2</sub> ideal adsorbed solution theory (IAST) selectivity values of 3.54–4.44, as well as a longer breakthrough interval time of 30 min g<sup>–1</sup> at 298 K and 1 bar. The preferred adsorption sites and density distributions of C<sub>2</sub>H<sub>2</sub> and CO<sub>2</sub> molecules in these two metal–organic frameworks (MOFs) were further calculated by the Grand Canonical Monte Carlo (GCMC) simulations to understand their adsorption and separation performance.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00892\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00892","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于乙炔(C2H2)和二氧化碳(CO2)具有相似的物理性质,因此在工业中有效分离这两种物质仍然具有挑战性。本研究采用团簇聚集策略制备了两种异构超微孔异烟酸铁骨架(SNNU-131 和 SNNU-132),这两种骨架均表现出突出的乙炔和二氧化碳吸附分离能力。线性三核团簇[FeIII2FeII(μ2-O)2(COO)4]及其二聚体六核团簇[FeIII4FeII2(μ3-O)2(μ2-O)2(COO)8]通过异烟酸连接体扩展生成了两个 8 连接的超分子异构体,分别具有典型的双核和六核拓扑结构。由于存在交叉尺寸约为 7 Å 的一维四边形通道和线性三核簇的开放金属位点,SNNU-131 在 298 K 和 1 bar 条件下具有较好的乙炔和二氧化碳吸附容量,分别为 88.5 和 49.9 cm3 g-1。另一方面,具有较小三角形通道的 SNNU-132 在 298 K 和 1 bar 条件下,具有较高的 C2H2/CO2 理想吸附溶液理论(IAST)选择性(3.54-4.44),以及较长的突破间隔时间(30 分钟 g-1)。为了了解这两种金属有机框架(MOFs)的吸附和分离性能,我们通过大规范蒙特卡洛(GCMC)模拟进一步计算了这两种金属有机框架(MOFs)中 C2H2 和 CO2 分子的优先吸附位点和密度分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster-Aggregation-Triggered Isomeric Ultra-Microporous Fe-Isonicotinate Frameworks for Efficient C2H2/CO2 Adsorption and Separation

Because of the similar physical properties of acetylene (C2H2) and carbon dioxide (CO2), their efficient separation remains challenging in industry. In this work, two isomeric ultra-microporous Fe-isonicotinate frameworks (SNNU-131 and SNNU-132) were prepared by a cluster-aggregation strategy, and both show prominent acetylene and carbon dioxide adsorption and separation ability. The linear trinuclear cluster [FeIII2FeII2-O)2(COO)4] and its dimer, hexanuclear cluster [FeIII4FeII23-O)22-O)2(COO)8] were extended by isonicotinic acid linkers to generate two 8-connected supramolecular isomers with typical bcu and hex topology, respectively. Thanks to the existence of 1D quadrilateral channels with crossing size of about 7 Å and open metal sites from linear trinuclear clusters, SNNU-131 has better acetylene and carbon dioxide adsorption capacities of 88.5 and 49.9 cm3 g–1 at 298 K and 1 bar. On the other hand, SNNU-132 with smaller triangular channels shows higher C2H2/CO2 ideal adsorbed solution theory (IAST) selectivity values of 3.54–4.44, as well as a longer breakthrough interval time of 30 min g–1 at 298 K and 1 bar. The preferred adsorption sites and density distributions of C2H2 and CO2 molecules in these two metal–organic frameworks (MOFs) were further calculated by the Grand Canonical Monte Carlo (GCMC) simulations to understand their adsorption and separation performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信