{"title":"癸二醇-乙氧基化改性三硅氧烷表面活性剂的制备与性能改进","authors":"Xinze Li, Ling Zhang, Yibo Li, Longxin Liu, Ruitao Wang, Hualei Zhou* and Donghai Zhang*, ","doi":"10.1021/acs.langmuir.4c0277010.1021/acs.langmuir.4c02770","DOIUrl":null,"url":null,"abstract":"<p >Silicone surfactants are increasingly used in the industrial field due to their advantages such as low surface energy, stable performance, and good biocompatibility. However, many polyether-modified silicone surfactants’ foam stability and easy hydrolysis in non-neutral aqueous systems limit their application in many fields. In this article, the decynediol-ethoxylate chain segment was grafted onto heptamethyltrisiloxane to synthesize a modified trisiloxane surfactant (G2). FT-IR and <sup>1</sup>H NMR characterized its structure. Its surface activity, aggregation behavior, and wetting and spreading properties in water were studied by using instruments such as a surface tension meter, transmission electron microscope (TEM), dynamic light scattering (DLS), and contact angle tester. G2 can reduce the surface tension of water to 19.24 mN/m at a lower CMC (40.44 mg/L), and the foaming properties and hydrolysis stability of decynediol-ethoxylate-modified trisiloxane (G2) in water are significantly improved compared with allyl-polyoxyethylene-ether-modified trisiloxane (X5).</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 41","pages":"21711–21718 21711–21718"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Properties Improvement of Decynediol-Ethoxylate-Modified Trisiloxane Surfactant\",\"authors\":\"Xinze Li, Ling Zhang, Yibo Li, Longxin Liu, Ruitao Wang, Hualei Zhou* and Donghai Zhang*, \",\"doi\":\"10.1021/acs.langmuir.4c0277010.1021/acs.langmuir.4c02770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Silicone surfactants are increasingly used in the industrial field due to their advantages such as low surface energy, stable performance, and good biocompatibility. However, many polyether-modified silicone surfactants’ foam stability and easy hydrolysis in non-neutral aqueous systems limit their application in many fields. In this article, the decynediol-ethoxylate chain segment was grafted onto heptamethyltrisiloxane to synthesize a modified trisiloxane surfactant (G2). FT-IR and <sup>1</sup>H NMR characterized its structure. Its surface activity, aggregation behavior, and wetting and spreading properties in water were studied by using instruments such as a surface tension meter, transmission electron microscope (TEM), dynamic light scattering (DLS), and contact angle tester. G2 can reduce the surface tension of water to 19.24 mN/m at a lower CMC (40.44 mg/L), and the foaming properties and hydrolysis stability of decynediol-ethoxylate-modified trisiloxane (G2) in water are significantly improved compared with allyl-polyoxyethylene-ether-modified trisiloxane (X5).</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"40 41\",\"pages\":\"21711–21718 21711–21718\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c02770\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c02770","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation and Properties Improvement of Decynediol-Ethoxylate-Modified Trisiloxane Surfactant
Silicone surfactants are increasingly used in the industrial field due to their advantages such as low surface energy, stable performance, and good biocompatibility. However, many polyether-modified silicone surfactants’ foam stability and easy hydrolysis in non-neutral aqueous systems limit their application in many fields. In this article, the decynediol-ethoxylate chain segment was grafted onto heptamethyltrisiloxane to synthesize a modified trisiloxane surfactant (G2). FT-IR and 1H NMR characterized its structure. Its surface activity, aggregation behavior, and wetting and spreading properties in water were studied by using instruments such as a surface tension meter, transmission electron microscope (TEM), dynamic light scattering (DLS), and contact angle tester. G2 can reduce the surface tension of water to 19.24 mN/m at a lower CMC (40.44 mg/L), and the foaming properties and hydrolysis stability of decynediol-ethoxylate-modified trisiloxane (G2) in water are significantly improved compared with allyl-polyoxyethylene-ether-modified trisiloxane (X5).
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).