Shuoyuan Huang, Shinian Cheng, Jianzhu Ju, Debaditya Chatterjee, Junguang Yu, Harald Bock, Lian Yu, Mark D. Ediger and Paul M. Voyles*,
{"title":"六方柱状液晶中排列和晶域生长的纳米级视图","authors":"Shuoyuan Huang, Shinian Cheng, Jianzhu Ju, Debaditya Chatterjee, Junguang Yu, Harald Bock, Lian Yu, Mark D. Ediger and Paul M. Voyles*, ","doi":"10.1021/acsnano.4c0750710.1021/acsnano.4c07507","DOIUrl":null,"url":null,"abstract":"<p >Highly ordered liquid crystalline (LC) phases have important potential for organic electronics. We studied the molecular alignment and domain structure in a columnar LC thin film with nanometer resolution during in situ heating using four-dimensional scanning transmission electron microscopy (4D STEM). The initial disordered vapor-deposited LC glass thin film rapidly ordered at its glass transition temperature into a hexagonal columnar phase with small (<10 nm), well-aligned, planar domains (columns oriented parallel to the surface). Upon further heating, the domains coarsen via bulk diffusion, then the film crystallizes, then finally transforms back to an LC phase at an even higher temperature. The LC phase at high temperature shows straight columns of molecules, which we attribute to structure inherited from the intermediate crystalline phase. Nanoscale 4D STEM offers direct insight into the mechanisms of domain reorganization, and intermediate crystallization is a potential approach to manipulate orientational order and texture at the nano- to mesoscale in LC thin films.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 41","pages":"28095–28103 28095–28103"},"PeriodicalIF":16.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale View of Alignment and Domain Growth in a Hexagonal Columnar Liquid Crystal\",\"authors\":\"Shuoyuan Huang, Shinian Cheng, Jianzhu Ju, Debaditya Chatterjee, Junguang Yu, Harald Bock, Lian Yu, Mark D. Ediger and Paul M. Voyles*, \",\"doi\":\"10.1021/acsnano.4c0750710.1021/acsnano.4c07507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Highly ordered liquid crystalline (LC) phases have important potential for organic electronics. We studied the molecular alignment and domain structure in a columnar LC thin film with nanometer resolution during in situ heating using four-dimensional scanning transmission electron microscopy (4D STEM). The initial disordered vapor-deposited LC glass thin film rapidly ordered at its glass transition temperature into a hexagonal columnar phase with small (<10 nm), well-aligned, planar domains (columns oriented parallel to the surface). Upon further heating, the domains coarsen via bulk diffusion, then the film crystallizes, then finally transforms back to an LC phase at an even higher temperature. The LC phase at high temperature shows straight columns of molecules, which we attribute to structure inherited from the intermediate crystalline phase. Nanoscale 4D STEM offers direct insight into the mechanisms of domain reorganization, and intermediate crystallization is a potential approach to manipulate orientational order and texture at the nano- to mesoscale in LC thin films.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 41\",\"pages\":\"28095–28103 28095–28103\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c07507\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c07507","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanoscale View of Alignment and Domain Growth in a Hexagonal Columnar Liquid Crystal
Highly ordered liquid crystalline (LC) phases have important potential for organic electronics. We studied the molecular alignment and domain structure in a columnar LC thin film with nanometer resolution during in situ heating using four-dimensional scanning transmission electron microscopy (4D STEM). The initial disordered vapor-deposited LC glass thin film rapidly ordered at its glass transition temperature into a hexagonal columnar phase with small (<10 nm), well-aligned, planar domains (columns oriented parallel to the surface). Upon further heating, the domains coarsen via bulk diffusion, then the film crystallizes, then finally transforms back to an LC phase at an even higher temperature. The LC phase at high temperature shows straight columns of molecules, which we attribute to structure inherited from the intermediate crystalline phase. Nanoscale 4D STEM offers direct insight into the mechanisms of domain reorganization, and intermediate crystallization is a potential approach to manipulate orientational order and texture at the nano- to mesoscale in LC thin films.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.