Yuma Saeki, Kazuma Higashisaka*, Rina Izutani, Jiwon Seo, Kazuki Miyaji, Yuya Haga and Yasuo Tsutsumi*,
{"title":"口服纳米银粒子可被小鼠吸收并迁移至睾丸","authors":"Yuma Saeki, Kazuma Higashisaka*, Rina Izutani, Jiwon Seo, Kazuki Miyaji, Yuya Haga and Yasuo Tsutsumi*, ","doi":"10.1021/acsnanoscienceau.4c0002110.1021/acsnanoscienceau.4c00021","DOIUrl":null,"url":null,"abstract":"<p >Given that daily exposure to nanoparticles is now unavoidable, there are concerns that nanoparticles have unexpected biological effects due to their small size. Here, we examined the biodistribution of silver nanoparticles, which are the most frequently used nanoparticles owing to their antibacterial activity, with a diameter of 10 nm (nAg10) to the male genital tract, and the effects of paternal treatment with nAg10 on fetal development. Male Slc:ICR male mice were orally treated with nAg10 for 14 consecutive days. Inductively coupled plasma mass spectrometry analysis detected silver in the blood and testis of male mice, but no general toxicological effects were induced. Moreover, there were no significant changes in fetal development when these treated male mice were mated with nontreated female mice. This implies that although orally ingested nAg10 is distributed to the male genital tract, it does not affect fetal development under the present treatment conditions.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00021","citationCount":"0","resultStr":"{\"title\":\"Orally Administered Silver Nanoparticles Are Absorbed and Migrate to Testes in Mice\",\"authors\":\"Yuma Saeki, Kazuma Higashisaka*, Rina Izutani, Jiwon Seo, Kazuki Miyaji, Yuya Haga and Yasuo Tsutsumi*, \",\"doi\":\"10.1021/acsnanoscienceau.4c0002110.1021/acsnanoscienceau.4c00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Given that daily exposure to nanoparticles is now unavoidable, there are concerns that nanoparticles have unexpected biological effects due to their small size. Here, we examined the biodistribution of silver nanoparticles, which are the most frequently used nanoparticles owing to their antibacterial activity, with a diameter of 10 nm (nAg10) to the male genital tract, and the effects of paternal treatment with nAg10 on fetal development. Male Slc:ICR male mice were orally treated with nAg10 for 14 consecutive days. Inductively coupled plasma mass spectrometry analysis detected silver in the blood and testis of male mice, but no general toxicological effects were induced. Moreover, there were no significant changes in fetal development when these treated male mice were mated with nontreated female mice. This implies that although orally ingested nAg10 is distributed to the male genital tract, it does not affect fetal development under the present treatment conditions.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.4c00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.4c00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Orally Administered Silver Nanoparticles Are Absorbed and Migrate to Testes in Mice
Given that daily exposure to nanoparticles is now unavoidable, there are concerns that nanoparticles have unexpected biological effects due to their small size. Here, we examined the biodistribution of silver nanoparticles, which are the most frequently used nanoparticles owing to their antibacterial activity, with a diameter of 10 nm (nAg10) to the male genital tract, and the effects of paternal treatment with nAg10 on fetal development. Male Slc:ICR male mice were orally treated with nAg10 for 14 consecutive days. Inductively coupled plasma mass spectrometry analysis detected silver in the blood and testis of male mice, but no general toxicological effects were induced. Moreover, there were no significant changes in fetal development when these treated male mice were mated with nontreated female mice. This implies that although orally ingested nAg10 is distributed to the male genital tract, it does not affect fetal development under the present treatment conditions.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.