整合铂钴纳米合金和掺硫 Co-N-C 构建质子交换膜燃料电池的氧还原反应催化剂

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fuquan Niu, Luyan Wang, Wenfeng Liu, Zhenpu Shi, Yange Yang, Yuantao Cui, Shuting Yang* and Yanhong Yin*, 
{"title":"整合铂钴纳米合金和掺硫 Co-N-C 构建质子交换膜燃料电池的氧还原反应催化剂","authors":"Fuquan Niu,&nbsp;Luyan Wang,&nbsp;Wenfeng Liu,&nbsp;Zhenpu Shi,&nbsp;Yange Yang,&nbsp;Yuantao Cui,&nbsp;Shuting Yang* and Yanhong Yin*,&nbsp;","doi":"10.1021/acsanm.4c0470510.1021/acsanm.4c04705","DOIUrl":null,"url":null,"abstract":"<p >Achieving high catalytic activity and stability with low platinum loading is vital for reducing the cost of proton exchange membrane fuel cells (PEMFCs) and enabling their large-scale commercialization. Herein, a three-dimensional (3D) nitrogen sulfur codoped carbon nanocomposite support embedded with Co nanoparticles derived from sulfur-doped zeolite imidazolate frameworks-67 was synthesized. After Pt nanoparticles are loaded, it can act as an excellent ORR catalyst (3D LPCNSC) for hydrogen–oxygen fuel cells. The existing metal Co are beneficial for catalyzing the growth of carbon nanotubes, generating CoN<sub><i>x</i></sub> structures, and partially forming Pt–Co nanoalloys. Nitrogen sulfur codoping can enhance metal–support interactions between Pt/Pt–Co and sulfur-doped Co–N–C by regulating the interfacial charge transfer. The 3D conductive network constructed using graphene oxide and carbon nanotubes contributes to enhanced electron and mass transfer. As a result, the 3D LPCNSC catalyst with a relatively lower Pt loading (13.65%) exhibits a superior half-potential, higher mass activity, and superb stability in comparison to commercial Pt/C (20%). A membrane electrode assembly assembled with this catalyst achieves a peak power density of 983.8 mW cm<sup>–2</sup> in a hydrogen–oxygen single cell. This work highlights a promising avenue for the structure and component design of low platinum nanocatalyst for PEMFCs.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Pt–Co Nanoalloy and Sulfur-Doped Co–N–C to Construct Oxygen Reduction Reaction Catalysts for Proton Exchange Membrane Fuel Cells\",\"authors\":\"Fuquan Niu,&nbsp;Luyan Wang,&nbsp;Wenfeng Liu,&nbsp;Zhenpu Shi,&nbsp;Yange Yang,&nbsp;Yuantao Cui,&nbsp;Shuting Yang* and Yanhong Yin*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0470510.1021/acsanm.4c04705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Achieving high catalytic activity and stability with low platinum loading is vital for reducing the cost of proton exchange membrane fuel cells (PEMFCs) and enabling their large-scale commercialization. Herein, a three-dimensional (3D) nitrogen sulfur codoped carbon nanocomposite support embedded with Co nanoparticles derived from sulfur-doped zeolite imidazolate frameworks-67 was synthesized. After Pt nanoparticles are loaded, it can act as an excellent ORR catalyst (3D LPCNSC) for hydrogen–oxygen fuel cells. The existing metal Co are beneficial for catalyzing the growth of carbon nanotubes, generating CoN<sub><i>x</i></sub> structures, and partially forming Pt–Co nanoalloys. Nitrogen sulfur codoping can enhance metal–support interactions between Pt/Pt–Co and sulfur-doped Co–N–C by regulating the interfacial charge transfer. The 3D conductive network constructed using graphene oxide and carbon nanotubes contributes to enhanced electron and mass transfer. As a result, the 3D LPCNSC catalyst with a relatively lower Pt loading (13.65%) exhibits a superior half-potential, higher mass activity, and superb stability in comparison to commercial Pt/C (20%). A membrane electrode assembly assembled with this catalyst achieves a peak power density of 983.8 mW cm<sup>–2</sup> in a hydrogen–oxygen single cell. This work highlights a promising avenue for the structure and component design of low platinum nanocatalyst for PEMFCs.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c04705\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04705","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要降低质子交换膜燃料电池(PEMFC)的成本并使其大规模商业化,就必须在低铂负载的情况下实现高催化活性和稳定性。在此,我们合成了一种三维(3D)氮硫共掺碳纳米复合支撑物,其中嵌入了从硫掺杂沸石咪唑啉框架-67中提取的钴纳米颗粒。负载铂纳米颗粒后,它可以作为氢氧燃料电池的一种优异的 ORR 催化剂(三维 LPCNSC)。现有的金属 Co 有利于催化碳纳米管的生长、生成 CoNx 结构以及部分形成 Pt-Co 纳米合金。氮硫共掺可通过调节界面电荷转移,增强 Pt/Pt-Co 和掺硫 Co-N-C 之间的金属支撑相互作用。使用氧化石墨烯和碳纳米管构建的三维导电网络有助于增强电子和质量传输。因此,与商用铂/钴(20%)相比,铂负载量相对较低(13.65%)的三维 LPCNSC 催化剂具有更优越的半电位、更高的质量活性和超强的稳定性。使用这种催化剂组装的膜电极组件在氢氧单电池中达到了 983.8 mW cm-2 的峰值功率密度。这项工作为用于 PEMFC 的低铂纳米催化剂的结构和组件设计开辟了一条前景广阔的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Pt–Co Nanoalloy and Sulfur-Doped Co–N–C to Construct Oxygen Reduction Reaction Catalysts for Proton Exchange Membrane Fuel Cells

Achieving high catalytic activity and stability with low platinum loading is vital for reducing the cost of proton exchange membrane fuel cells (PEMFCs) and enabling their large-scale commercialization. Herein, a three-dimensional (3D) nitrogen sulfur codoped carbon nanocomposite support embedded with Co nanoparticles derived from sulfur-doped zeolite imidazolate frameworks-67 was synthesized. After Pt nanoparticles are loaded, it can act as an excellent ORR catalyst (3D LPCNSC) for hydrogen–oxygen fuel cells. The existing metal Co are beneficial for catalyzing the growth of carbon nanotubes, generating CoNx structures, and partially forming Pt–Co nanoalloys. Nitrogen sulfur codoping can enhance metal–support interactions between Pt/Pt–Co and sulfur-doped Co–N–C by regulating the interfacial charge transfer. The 3D conductive network constructed using graphene oxide and carbon nanotubes contributes to enhanced electron and mass transfer. As a result, the 3D LPCNSC catalyst with a relatively lower Pt loading (13.65%) exhibits a superior half-potential, higher mass activity, and superb stability in comparison to commercial Pt/C (20%). A membrane electrode assembly assembled with this catalyst achieves a peak power density of 983.8 mW cm–2 in a hydrogen–oxygen single cell. This work highlights a promising avenue for the structure and component design of low platinum nanocatalyst for PEMFCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信