青少年抑郁症功能连接和网络异常的大型分析

Nga Yan Tse, Aswin Ratheesh, Ye Ella Tian, Colm G. Connolly, Christopher G. Davey, Saampras Ganesan, Ian H. Gotlib, Ben J. Harrison, Laura K. M. Han, Tiffany C. Ho, Alec J. Jamieson, Jaclyn S. Kirshenbaum, Yong Liu, Xiaohong Ma, Amar Ojha, Jiang Qiu, Matthew D. Sacchet, Lianne Schmaal, Alan N. Simmons, John Suckling, Dongtao Wei, Xiao Yang, Tony T. Yang, Robin F. H. Cash, Andrew Zalesky
{"title":"青少年抑郁症功能连接和网络异常的大型分析","authors":"Nga Yan Tse, Aswin Ratheesh, Ye Ella Tian, Colm G. Connolly, Christopher G. Davey, Saampras Ganesan, Ian H. Gotlib, Ben J. Harrison, Laura K. M. Han, Tiffany C. Ho, Alec J. Jamieson, Jaclyn S. Kirshenbaum, Yong Liu, Xiaohong Ma, Amar Ojha, Jiang Qiu, Matthew D. Sacchet, Lianne Schmaal, Alan N. Simmons, John Suckling, Dongtao Wei, Xiao Yang, Tony T. Yang, Robin F. H. Cash, Andrew Zalesky","doi":"10.1038/s44220-024-00309-y","DOIUrl":null,"url":null,"abstract":"Major depressive disorder (MDD) represents the leading cause of mental health disability for young people worldwide but remains poorly understood. Previous neuroimaging research has indicated alterations in the connectivity of brain circuitry in youth MDD; however, findings have been inconsistent. This may relate to limitations in sample size and sample and methodological heterogeneity. In an effort to delineate robust neurobiological markers of youth MDD, we conducted a data-driven, connectome-wide mega-analysis of resting-state functional connectivity in 810 young individuals across 7 independent cohorts with a cross-sectional and case-control design. Compared with healthy comparison individuals (n = 370), youth MDD (n = 440) was associated with significant alterations in connectivity of densely connected brain areas (hubs), anchored in the default mode and dorsal and ventral attention networks. Critically, functional connectivity within these networks was significantly associated with depression symptom severity (r = –0.46 for hypoconnected regions and r = 0.53 for hyperconnected regions; both P values < 0.001), indicating the clinical relevance of functional connectivity alterations. Further, machine-learning analyses demonstrated that individual diagnostic status (AUC = 73.1%) and clinical severity (r = 0.14, P = 0.008) could be predicted on the basis of functional connectivity alone in unseen data using leave-one-site-out cross-validation. Together, our work represents an important first step toward robust characterization of the neurobiological basis of youth depression. We demonstrate the clinical relevance of brain connectivity in youth depression and highlight a critical role of functional hub regions, especially those localized to the default mode and dorsal and ventral attention networks in youth MDD. This mega-analysis of brain resting-state functional connectivity in young individuals with major depressive disorder scanned at six sites across four countries identified hub regions of the attentional and default mode networks as predictors of depression severity.","PeriodicalId":74247,"journal":{"name":"Nature mental health","volume":"2 10","pages":"1169-1182"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mega-analysis of functional connectivity and network abnormalities in youth depression\",\"authors\":\"Nga Yan Tse, Aswin Ratheesh, Ye Ella Tian, Colm G. Connolly, Christopher G. Davey, Saampras Ganesan, Ian H. Gotlib, Ben J. Harrison, Laura K. M. Han, Tiffany C. Ho, Alec J. Jamieson, Jaclyn S. Kirshenbaum, Yong Liu, Xiaohong Ma, Amar Ojha, Jiang Qiu, Matthew D. Sacchet, Lianne Schmaal, Alan N. Simmons, John Suckling, Dongtao Wei, Xiao Yang, Tony T. Yang, Robin F. H. Cash, Andrew Zalesky\",\"doi\":\"10.1038/s44220-024-00309-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Major depressive disorder (MDD) represents the leading cause of mental health disability for young people worldwide but remains poorly understood. Previous neuroimaging research has indicated alterations in the connectivity of brain circuitry in youth MDD; however, findings have been inconsistent. This may relate to limitations in sample size and sample and methodological heterogeneity. In an effort to delineate robust neurobiological markers of youth MDD, we conducted a data-driven, connectome-wide mega-analysis of resting-state functional connectivity in 810 young individuals across 7 independent cohorts with a cross-sectional and case-control design. Compared with healthy comparison individuals (n = 370), youth MDD (n = 440) was associated with significant alterations in connectivity of densely connected brain areas (hubs), anchored in the default mode and dorsal and ventral attention networks. Critically, functional connectivity within these networks was significantly associated with depression symptom severity (r = –0.46 for hypoconnected regions and r = 0.53 for hyperconnected regions; both P values < 0.001), indicating the clinical relevance of functional connectivity alterations. Further, machine-learning analyses demonstrated that individual diagnostic status (AUC = 73.1%) and clinical severity (r = 0.14, P = 0.008) could be predicted on the basis of functional connectivity alone in unseen data using leave-one-site-out cross-validation. Together, our work represents an important first step toward robust characterization of the neurobiological basis of youth depression. We demonstrate the clinical relevance of brain connectivity in youth depression and highlight a critical role of functional hub regions, especially those localized to the default mode and dorsal and ventral attention networks in youth MDD. This mega-analysis of brain resting-state functional connectivity in young individuals with major depressive disorder scanned at six sites across four countries identified hub regions of the attentional and default mode networks as predictors of depression severity.\",\"PeriodicalId\":74247,\"journal\":{\"name\":\"Nature mental health\",\"volume\":\"2 10\",\"pages\":\"1169-1182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature mental health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44220-024-00309-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature mental health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44220-024-00309-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重度抑郁障碍(MDD)是导致全球青少年心理健康残疾的主要原因,但人们对它的了解仍然很少。以往的神经影像学研究表明,青少年重度抑郁症患者大脑回路的连通性发生了改变,但研究结果并不一致。这可能与样本量的限制以及样本和方法的异质性有关。为了确定青少年 MDD 强有力的神经生物学标志物,我们对 7 个独立队列中 810 名年轻人的静息状态功能连接性进行了数据驱动的全连接体大型分析,分析采用了横断面和病例对照设计。与健康对比个体(n = 370)相比,青少年 MDD(n = 440)与密集连接的脑区(枢纽)的连通性显著改变有关,这些脑区锚定在默认模式、背侧和腹侧注意力网络中。重要的是,这些网络内的功能连通性与抑郁症状的严重程度显著相关(低连通性区域的连通性为-0.46,高连通性区域的连通性为0.53;P值均为0.001),这表明功能连通性改变具有临床意义。此外,机器学习分析表明,在未见过的数据中,使用 "留一弃一 "交叉验证,仅根据功能连接就能预测个体诊断状态(AUC = 73.1%)和临床严重程度(r = 0.14,P = 0.008)。总之,我们的研究工作代表着我们向稳健描述青少年抑郁症的神经生物学基础迈出了重要的第一步。我们证明了大脑连通性在青少年抑郁症中的临床意义,并强调了功能性枢纽区域的关键作用,尤其是那些定位在默认模式以及背侧和腹侧注意力网络的区域在青少年 MDD 中的作用。这项在四个国家的六个地点对患有重度抑郁症的年轻人的大脑静息态功能连接进行扫描的大型分析发现,注意力和默认模式网络的枢纽区域是抑郁症严重程度的预测因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A mega-analysis of functional connectivity and network abnormalities in youth depression

A mega-analysis of functional connectivity and network abnormalities in youth depression
Major depressive disorder (MDD) represents the leading cause of mental health disability for young people worldwide but remains poorly understood. Previous neuroimaging research has indicated alterations in the connectivity of brain circuitry in youth MDD; however, findings have been inconsistent. This may relate to limitations in sample size and sample and methodological heterogeneity. In an effort to delineate robust neurobiological markers of youth MDD, we conducted a data-driven, connectome-wide mega-analysis of resting-state functional connectivity in 810 young individuals across 7 independent cohorts with a cross-sectional and case-control design. Compared with healthy comparison individuals (n = 370), youth MDD (n = 440) was associated with significant alterations in connectivity of densely connected brain areas (hubs), anchored in the default mode and dorsal and ventral attention networks. Critically, functional connectivity within these networks was significantly associated with depression symptom severity (r = –0.46 for hypoconnected regions and r = 0.53 for hyperconnected regions; both P values < 0.001), indicating the clinical relevance of functional connectivity alterations. Further, machine-learning analyses demonstrated that individual diagnostic status (AUC = 73.1%) and clinical severity (r = 0.14, P = 0.008) could be predicted on the basis of functional connectivity alone in unseen data using leave-one-site-out cross-validation. Together, our work represents an important first step toward robust characterization of the neurobiological basis of youth depression. We demonstrate the clinical relevance of brain connectivity in youth depression and highlight a critical role of functional hub regions, especially those localized to the default mode and dorsal and ventral attention networks in youth MDD. This mega-analysis of brain resting-state functional connectivity in young individuals with major depressive disorder scanned at six sites across four countries identified hub regions of the attentional and default mode networks as predictors of depression severity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信