Maja Neidhart, Rikka Kjelkenes, Karina Jansone, Barbora Rehák Bučková, Nathalie Holz, Frauke Nees, Henrik Walter, Gunter Schumann, Michael A. Rapp, Tobias Banaschewski, Emanuel Schwarz, Andre Marquand, on behalf of the environMENTAL consortium
{"title":"大型队列数据协调协议","authors":"Maja Neidhart, Rikka Kjelkenes, Karina Jansone, Barbora Rehák Bučková, Nathalie Holz, Frauke Nees, Henrik Walter, Gunter Schumann, Michael A. Rapp, Tobias Banaschewski, Emanuel Schwarz, Andre Marquand, on behalf of the environMENTAL consortium","doi":"10.1038/s44220-024-00315-0","DOIUrl":null,"url":null,"abstract":"This Comment presents a high-level protocol for data harmonization within large cohorts, in which it postulates four main steps including (1) expert review, (2) pre-statistical harmonization, (3) statistical harmonization, and (4) validation.","PeriodicalId":74247,"journal":{"name":"Nature mental health","volume":"2 10","pages":"1134-1137"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44220-024-00315-0.pdf","citationCount":"0","resultStr":"{\"title\":\"A protocol for data harmonization in large cohorts\",\"authors\":\"Maja Neidhart, Rikka Kjelkenes, Karina Jansone, Barbora Rehák Bučková, Nathalie Holz, Frauke Nees, Henrik Walter, Gunter Schumann, Michael A. Rapp, Tobias Banaschewski, Emanuel Schwarz, Andre Marquand, on behalf of the environMENTAL consortium\",\"doi\":\"10.1038/s44220-024-00315-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This Comment presents a high-level protocol for data harmonization within large cohorts, in which it postulates four main steps including (1) expert review, (2) pre-statistical harmonization, (3) statistical harmonization, and (4) validation.\",\"PeriodicalId\":74247,\"journal\":{\"name\":\"Nature mental health\",\"volume\":\"2 10\",\"pages\":\"1134-1137\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44220-024-00315-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature mental health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44220-024-00315-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature mental health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44220-024-00315-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A protocol for data harmonization in large cohorts
This Comment presents a high-level protocol for data harmonization within large cohorts, in which it postulates four main steps including (1) expert review, (2) pre-statistical harmonization, (3) statistical harmonization, and (4) validation.