保角相关爱因斯坦度量的间隙现象

IF 0.8 3区 数学 Q2 MATHEMATICS
Josef Šilhan, Jan Gregorovič
{"title":"保角相关爱因斯坦度量的间隙现象","authors":"Josef Šilhan,&nbsp;Jan Gregorovič","doi":"10.1112/blms.13128","DOIUrl":null,"url":null,"abstract":"<p>We determine the submaximal dimensions of the spaces of almost Einstein scales and normal conformal Killing fields for connected conformal manifolds. The results depend on the signature and dimension <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> of the conformally nonflat conformal manifold. In definite signature, these two dimensions are at most <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n-3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mfrac>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mspace></mspace>\n <mo>−</mo>\n <mspace></mspace>\n <mn>4</mn>\n <mo>)</mo>\n <mo>(</mo>\n <mi>n</mi>\n <mspace></mspace>\n <mo>−</mo>\n <mspace></mspace>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </mfrac>\n <annotation>$\\frac{(n\\;-\\;4)(n\\;-\\;3)}{2}$</annotation>\n </semantics></math>, respectively. In Lorentzian signature, these two dimensions are at most <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n-2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mfrac>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mspace></mspace>\n <mo>−</mo>\n <mspace></mspace>\n <mn>3</mn>\n <mo>)</mo>\n <mo>(</mo>\n <mi>n</mi>\n <mspace></mspace>\n <mo>−</mo>\n <mspace></mspace>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </mfrac>\n <annotation>$\\frac{(n\\;-\\;3)(n\\;-\\;2)}{2}$</annotation>\n </semantics></math>, respectively. In the remaining signatures, these two dimensions are at most <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n-1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mfrac>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mspace></mspace>\n <mo>−</mo>\n <mspace></mspace>\n <mn>2</mn>\n <mo>)</mo>\n <mo>(</mo>\n <mi>n</mi>\n <mspace></mspace>\n <mo>−</mo>\n <mspace></mspace>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </mfrac>\n <annotation>$\\frac{(n\\;-\\;2)(n\\;-\\;1)}{2}$</annotation>\n </semantics></math>, respectively. This upper bound is sharp and to realize examples of submaximal dimensions, we first provide them directly in dimension 4. In higher dimensions, we construct the submaximal examples as the (warped) product of the (pseudo)-Euclidean base of dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$n-4$</annotation>\n </semantics></math> with one of the 4-dimensional submaximal examples.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3209-3228"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The gap phenomenon for conformally related Einstein metrics\",\"authors\":\"Josef Šilhan,&nbsp;Jan Gregorovič\",\"doi\":\"10.1112/blms.13128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We determine the submaximal dimensions of the spaces of almost Einstein scales and normal conformal Killing fields for connected conformal manifolds. The results depend on the signature and dimension <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> of the conformally nonflat conformal manifold. In definite signature, these two dimensions are at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$n-3$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mfrac>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mspace></mspace>\\n <mo>−</mo>\\n <mspace></mspace>\\n <mn>4</mn>\\n <mo>)</mo>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mspace></mspace>\\n <mo>−</mo>\\n <mspace></mspace>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n <mn>2</mn>\\n </mfrac>\\n <annotation>$\\\\frac{(n\\\\;-\\\\;4)(n\\\\;-\\\\;3)}{2}$</annotation>\\n </semantics></math>, respectively. In Lorentzian signature, these two dimensions are at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n-2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mfrac>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mspace></mspace>\\n <mo>−</mo>\\n <mspace></mspace>\\n <mn>3</mn>\\n <mo>)</mo>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mspace></mspace>\\n <mo>−</mo>\\n <mspace></mspace>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <mn>2</mn>\\n </mfrac>\\n <annotation>$\\\\frac{(n\\\\;-\\\\;3)(n\\\\;-\\\\;2)}{2}$</annotation>\\n </semantics></math>, respectively. In the remaining signatures, these two dimensions are at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$n-1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mfrac>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mspace></mspace>\\n <mo>−</mo>\\n <mspace></mspace>\\n <mn>2</mn>\\n <mo>)</mo>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mspace></mspace>\\n <mo>−</mo>\\n <mspace></mspace>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <mn>2</mn>\\n </mfrac>\\n <annotation>$\\\\frac{(n\\\\;-\\\\;2)(n\\\\;-\\\\;1)}{2}$</annotation>\\n </semantics></math>, respectively. This upper bound is sharp and to realize examples of submaximal dimensions, we first provide them directly in dimension 4. In higher dimensions, we construct the submaximal examples as the (warped) product of the (pseudo)-Euclidean base of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$n-4$</annotation>\\n </semantics></math> with one of the 4-dimensional submaximal examples.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 10\",\"pages\":\"3209-3228\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13128\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13128","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了连通共形流形的近爱因斯坦尺度空间和法共形基林场的次极限尺寸。结果取决于共形非平坦共形流形的签名和维数 n $n$。在定符号中,这两个维度分别最多为 n - 3 $n-3$ 和 ( n - 4 ) ( n - 3 ) 2 $\frac{(n\;-\;4)(n\;-\;3)}{2}$ 。在洛伦兹签名中,这两个维度分别最多为 n - 2 $n-2$ 和 ( n - 3 ) ( n - 2 ) 2 $\frac{(n\;-\;3)(n\;-\;2)}{2}$ 。在其余的签名中,这两个维度分别最多为 n - 1 $n-1$ 和 ( n - 2 ) ( n - 1 ) 2 $\frac{(n\;-\;2)(n\;-\;1)}{2}$ 。这个上界很尖锐,为了实现次极限维数的例子,我们首先直接提供维数 4 的例子。在更高维度中,我们将次极值范例构建为 n - 4 维 $n-4$ 的(伪)欧几里得基与其中一个 4 维次极值范例的(扭曲)乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The gap phenomenon for conformally related Einstein metrics

We determine the submaximal dimensions of the spaces of almost Einstein scales and normal conformal Killing fields for connected conformal manifolds. The results depend on the signature and dimension n $n$ of the conformally nonflat conformal manifold. In definite signature, these two dimensions are at most n 3 $n-3$ and ( n 4 ) ( n 3 ) 2 $\frac{(n\;-\;4)(n\;-\;3)}{2}$ , respectively. In Lorentzian signature, these two dimensions are at most n 2 $n-2$ and ( n 3 ) ( n 2 ) 2 $\frac{(n\;-\;3)(n\;-\;2)}{2}$ , respectively. In the remaining signatures, these two dimensions are at most n 1 $n-1$ and ( n 2 ) ( n 1 ) 2 $\frac{(n\;-\;2)(n\;-\;1)}{2}$ , respectively. This upper bound is sharp and to realize examples of submaximal dimensions, we first provide them directly in dimension 4. In higher dimensions, we construct the submaximal examples as the (warped) product of the (pseudo)-Euclidean base of dimension n 4 $n-4$ with one of the 4-dimensional submaximal examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信