实解析映射的不稳定性问题

IF 0.8 3区 数学 Q2 MATHEMATICS
Karim Bekka, Satoshi Koike, Toru Ohmoto, Masahiro Shiota, Masato Tanabe
{"title":"实解析映射的不稳定性问题","authors":"Karim Bekka,&nbsp;Satoshi Koike,&nbsp;Toru Ohmoto,&nbsp;Masahiro Shiota,&nbsp;Masato Tanabe","doi":"10.1112/blms.13124","DOIUrl":null,"url":null,"abstract":"<p>As well known, the <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$C^\\infty$</annotation>\n </semantics></math> stability of proper <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$C^\\infty$</annotation>\n </semantics></math> maps is characterized by the infinitesimal <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$C^\\infty$</annotation>\n </semantics></math> stability. In the present paper, we study the counterpart in real analytic context. In particular, we show that the infinitesimal <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$C^\\omega$</annotation>\n </semantics></math> stability does not imply <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$C^\\omega$</annotation>\n </semantics></math> stability; for instance, <i>a Whitney umbrella</i> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>R</mi>\n <mn>3</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {R}^2 \\rightarrow \\mathbb {R}^3$</annotation>\n </semantics></math> <i>is not</i> <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$C^\\omega$</annotation>\n </semantics></math> <i>stable</i>. A main tool for the proof is a relative version of Whitney's analytic approximation theorem that is shown by using H. Cartan's Theorems A and B.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3174-3180"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unstability problem of real analytic maps\",\"authors\":\"Karim Bekka,&nbsp;Satoshi Koike,&nbsp;Toru Ohmoto,&nbsp;Masahiro Shiota,&nbsp;Masato Tanabe\",\"doi\":\"10.1112/blms.13124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As well known, the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$C^\\\\infty$</annotation>\\n </semantics></math> stability of proper <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$C^\\\\infty$</annotation>\\n </semantics></math> maps is characterized by the infinitesimal <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$C^\\\\infty$</annotation>\\n </semantics></math> stability. In the present paper, we study the counterpart in real analytic context. In particular, we show that the infinitesimal <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mi>ω</mi>\\n </msup>\\n <annotation>$C^\\\\omega$</annotation>\\n </semantics></math> stability does not imply <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mi>ω</mi>\\n </msup>\\n <annotation>$C^\\\\omega$</annotation>\\n </semantics></math> stability; for instance, <i>a Whitney umbrella</i> <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>→</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>3</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {R}^2 \\\\rightarrow \\\\mathbb {R}^3$</annotation>\\n </semantics></math> <i>is not</i> <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mi>ω</mi>\\n </msup>\\n <annotation>$C^\\\\omega$</annotation>\\n </semantics></math> <i>stable</i>. A main tool for the proof is a relative version of Whitney's analytic approximation theorem that is shown by using H. Cartan's Theorems A and B.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 10\",\"pages\":\"3174-3180\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13124\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13124","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,适当 C ∞ $C^infty$ 映射的 C ∞ $C^infty$ 稳定性是以无穷小 C ∞ $C^infty$ 稳定性为特征的。在本文中,我们研究了实解析背景下的对应关系。特别是,我们证明了无穷小 C ω $C^\omega$ 稳定性并不意味着 C ω $C^\omega$ 稳定性;例如,惠特尼伞 R 2 → R 3 $\mathbb {R}^2 \rightarrow \mathbb {R}^3$ 不是 C ω $C^\omega$ 稳定性。证明的一个主要工具是惠特尼解析近似定理的一个相对版本,它是通过 H. Cartan 的定理 A 和 B 来证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unstability problem of real analytic maps

As well known, the C $C^\infty$ stability of proper C $C^\infty$ maps is characterized by the infinitesimal C $C^\infty$ stability. In the present paper, we study the counterpart in real analytic context. In particular, we show that the infinitesimal C ω $C^\omega$ stability does not imply C ω $C^\omega$ stability; for instance, a Whitney umbrella R 2 R 3 $\mathbb {R}^2 \rightarrow \mathbb {R}^3$ is not C ω $C^\omega$ stable. A main tool for the proof is a relative version of Whitney's analytic approximation theorem that is shown by using H. Cartan's Theorems A and B.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信