基于深度学习的新型驾驶员嗜睡检测技术

IF 2.2 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Prithwijit Mukherjee, Anisha Halder Roy
{"title":"基于深度学习的新型驾驶员嗜睡检测技术","authors":"Prithwijit Mukherjee,&nbsp;Anisha Halder Roy","doi":"10.1002/hfm.21056","DOIUrl":null,"url":null,"abstract":"<p>Every year, many people lose their lives because of road accidents. It is evident from statistics that drowsiness is one of the main causes of a large number of car accidents. In our research, we wish to solve this major problem by measuring the drowsiness level of the human brain while driving. The study aims to develop a novel technique to detect different alertness levels (i.e., awake, moderately drowsy, and maximally drowsy) of a person while driving. A hybrid model using a stacked autoencoder and hyperbolic tangent Long Short-Term Memory (TLSTM) network with attention mechanism is designed for this purpose. The designed model uses different biopotential signals, such as electroencephalography (EEG), facial electromyography (EMG), and different biomarkers, such as pulse rate, respiration rate galvanic skin response, and head movement to detect a person's alertness level. Here, the stacked autoencoder model is used for automated feature extraction. TLSTM is used to predict a person's alertness level using stacked autoencoder network-extracted features. The proposed model can classify awake, moderately drowsy, and maximally drowsy states of a person with accuracies of 99%, 98.3%, and 98.6%, respectively. The novel contributions of the paper includes (i) incorporation of an attention mechanism into the TLSTM network of the proposed hybrid model to focus on the emphatic states to enhance classification accuracy, and (ii) utilization of EEG, facial EMG, pulse rate, respiration rate, galvanic skin reaction, and head movement pattern to assess a person's alertness level.</p>","PeriodicalId":55048,"journal":{"name":"Human Factors and Ergonomics in Manufacturing & Service Industries","volume":"34 6","pages":"667-684"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel deep learning-based technique for driver drowsiness detection\",\"authors\":\"Prithwijit Mukherjee,&nbsp;Anisha Halder Roy\",\"doi\":\"10.1002/hfm.21056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Every year, many people lose their lives because of road accidents. It is evident from statistics that drowsiness is one of the main causes of a large number of car accidents. In our research, we wish to solve this major problem by measuring the drowsiness level of the human brain while driving. The study aims to develop a novel technique to detect different alertness levels (i.e., awake, moderately drowsy, and maximally drowsy) of a person while driving. A hybrid model using a stacked autoencoder and hyperbolic tangent Long Short-Term Memory (TLSTM) network with attention mechanism is designed for this purpose. The designed model uses different biopotential signals, such as electroencephalography (EEG), facial electromyography (EMG), and different biomarkers, such as pulse rate, respiration rate galvanic skin response, and head movement to detect a person's alertness level. Here, the stacked autoencoder model is used for automated feature extraction. TLSTM is used to predict a person's alertness level using stacked autoencoder network-extracted features. The proposed model can classify awake, moderately drowsy, and maximally drowsy states of a person with accuracies of 99%, 98.3%, and 98.6%, respectively. The novel contributions of the paper includes (i) incorporation of an attention mechanism into the TLSTM network of the proposed hybrid model to focus on the emphatic states to enhance classification accuracy, and (ii) utilization of EEG, facial EMG, pulse rate, respiration rate, galvanic skin reaction, and head movement pattern to assess a person's alertness level.</p>\",\"PeriodicalId\":55048,\"journal\":{\"name\":\"Human Factors and Ergonomics in Manufacturing & Service Industries\",\"volume\":\"34 6\",\"pages\":\"667-684\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Factors and Ergonomics in Manufacturing & Service Industries\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hfm.21056\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors and Ergonomics in Manufacturing & Service Industries","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hfm.21056","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

每年都有许多人因交通事故丧生。从统计数据可以看出,瞌睡是导致大量车祸的主要原因之一。在我们的研究中,我们希望通过测量驾驶时人脑的瞌睡程度来解决这一重大问题。这项研究旨在开发一种新型技术,以检测驾驶时人的不同警觉程度(即清醒、中度昏昏欲睡和极度昏昏欲睡)。为此,研究人员设计了一个混合模型,该模型采用了堆叠式自动编码器和双曲正切长短期记忆(TLSTM)网络以及注意力机制。所设计的模型使用不同的生物电位信号(如脑电图(EEG)、面部肌电图(EMG))和不同的生物标记(如脉搏率、呼吸率、皮肤电反应和头部运动)来检测人的警觉程度。在这里,堆叠自动编码器模型被用于自动特征提取。利用堆叠自动编码器网络提取的特征,TLSTM 可用于预测人的警觉程度。所提出的模型可对人的清醒、中度昏睡和极度昏睡状态进行分类,准确率分别为 99%、98.3% 和 98.6%。本文的新贡献包括:(i) 在所提出的混合模型的 TLSTM 网络中加入注意力机制,以关注强调状态,从而提高分类准确率;(ii) 利用脑电图、面部肌电图、脉搏率、呼吸率、皮肤电反应和头部运动模式来评估人的警觉程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel deep learning-based technique for driver drowsiness detection

Every year, many people lose their lives because of road accidents. It is evident from statistics that drowsiness is one of the main causes of a large number of car accidents. In our research, we wish to solve this major problem by measuring the drowsiness level of the human brain while driving. The study aims to develop a novel technique to detect different alertness levels (i.e., awake, moderately drowsy, and maximally drowsy) of a person while driving. A hybrid model using a stacked autoencoder and hyperbolic tangent Long Short-Term Memory (TLSTM) network with attention mechanism is designed for this purpose. The designed model uses different biopotential signals, such as electroencephalography (EEG), facial electromyography (EMG), and different biomarkers, such as pulse rate, respiration rate galvanic skin response, and head movement to detect a person's alertness level. Here, the stacked autoencoder model is used for automated feature extraction. TLSTM is used to predict a person's alertness level using stacked autoencoder network-extracted features. The proposed model can classify awake, moderately drowsy, and maximally drowsy states of a person with accuracies of 99%, 98.3%, and 98.6%, respectively. The novel contributions of the paper includes (i) incorporation of an attention mechanism into the TLSTM network of the proposed hybrid model to focus on the emphatic states to enhance classification accuracy, and (ii) utilization of EEG, facial EMG, pulse rate, respiration rate, galvanic skin reaction, and head movement pattern to assess a person's alertness level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
8.30%
发文量
37
审稿时长
6.0 months
期刊介绍: The purpose of Human Factors and Ergonomics in Manufacturing & Service Industries is to facilitate discovery, integration, and application of scientific knowledge about human aspects of manufacturing, and to provide a forum for worldwide dissemination of such knowledge for its application and benefit to manufacturing industries. The journal covers a broad spectrum of ergonomics and human factors issues with a focus on the design, operation and management of contemporary manufacturing systems, both in the shop floor and office environments, in the quest for manufacturing agility, i.e. enhancement and integration of human skills with hardware performance for improved market competitiveness, management of change, product and process quality, and human-system reliability. The inter- and cross-disciplinary nature of the journal allows for a wide scope of issues relevant to manufacturing system design and engineering, human resource management, social, organizational, safety, and health issues. Examples of specific subject areas of interest include: implementation of advanced manufacturing technology, human aspects of computer-aided design and engineering, work design, compensation and appraisal, selection training and education, labor-management relations, agile manufacturing and virtual companies, human factors in total quality management, prevention of work-related musculoskeletal disorders, ergonomics of workplace, equipment and tool design, ergonomics programs, guides and standards for industry, automation safety and robot systems, human skills development and knowledge enhancing technologies, reliability, and safety and worker health issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信