近似凸性的急剧加倍阈值

IF 0.8 3区 数学 Q2 MATHEMATICS
Peter van Hintum, Peter Keevash
{"title":"近似凸性的急剧加倍阈值","authors":"Peter van Hintum,&nbsp;Peter Keevash","doi":"10.1112/blms.13129","DOIUrl":null,"url":null,"abstract":"<p>We show for <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$A,B\\subset \\mathbb {R}^d$</annotation>\n </semantics></math> of equal volume and <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$t\\in (0,1/2]$</annotation>\n </semantics></math> that if <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>t</mi>\n <mi>A</mi>\n <mo>+</mo>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>−</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <mi>B</mi>\n <mo>|</mo>\n <mo>&lt;</mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>+</mo>\n <msup>\n <mi>t</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>|</mo>\n <mi>A</mi>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$|tA+(1-t)B|&amp;lt; (1+t^d)|A|$</annotation>\n </semantics></math>, then (up to translation) <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mo>co</mo>\n <mo>(</mo>\n <mi>A</mi>\n <mo>∪</mo>\n <mi>B</mi>\n <mo>)</mo>\n <mo>|</mo>\n <mo>/</mo>\n <mo>|</mo>\n <mi>A</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|\\operatorname{co}(A\\cup B)|/|A|$</annotation>\n </semantics></math> is bounded. This establishes the sharp threshold for the quantitative stability of the Brunn–Minkowski inequality recently established by Figalli, van Hintum, and Tiba, the proof of which uses our current result. We additionally establish a similar sharp threshold for iterated sumsets.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3229-3239"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13129","citationCount":"0","resultStr":"{\"title\":\"The sharp doubling threshold for approximate convexity\",\"authors\":\"Peter van Hintum,&nbsp;Peter Keevash\",\"doi\":\"10.1112/blms.13129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mi>B</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$A,B\\\\subset \\\\mathbb {R}^d$</annotation>\\n </semantics></math> of equal volume and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$t\\\\in (0,1/2]$</annotation>\\n </semantics></math> that if <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>|</mo>\\n <mi>t</mi>\\n <mi>A</mi>\\n <mo>+</mo>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>−</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>B</mi>\\n <mo>|</mo>\\n <mo>&lt;</mo>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <msup>\\n <mi>t</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mo>|</mo>\\n <mi>A</mi>\\n <mo>|</mo>\\n </mrow>\\n </mrow>\\n <annotation>$|tA+(1-t)B|&amp;lt; (1+t^d)|A|$</annotation>\\n </semantics></math>, then (up to translation) <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mo>co</mo>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>∪</mo>\\n <mi>B</mi>\\n <mo>)</mo>\\n <mo>|</mo>\\n <mo>/</mo>\\n <mo>|</mo>\\n <mi>A</mi>\\n <mo>|</mo>\\n </mrow>\\n <annotation>$|\\\\operatorname{co}(A\\\\cup B)|/|A|$</annotation>\\n </semantics></math> is bounded. This establishes the sharp threshold for the quantitative stability of the Brunn–Minkowski inequality recently established by Figalli, van Hintum, and Tiba, the proof of which uses our current result. We additionally establish a similar sharp threshold for iterated sumsets.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 10\",\"pages\":\"3229-3239\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13129\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13129\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13129","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于 A , B ⊂ R d $A,B\subset \mathbb {R}^d$ 体积相等且 t∈ ( 0 , 1 / 2 ]$,如果 | t A + ( 1 - t ) 在 (0,1/2]$ 中,则 | t A + ( 1 - t ) = $。 $t\in (0,1/2]$ that if | t A + ( 1 - t ) B | < ( 1 + t d ) | A | $|tA+(1-t)B|&lt; (1+t^d)|A|$ ,则(直至平移) | co ( A ∪ B ) | / | A | $|\operatorname{co}(A\cup B)|/|A|$ 是有界的。这就确立了菲加里、范欣图姆和蒂巴最近建立的布鲁恩-明考斯基不等式定量稳定性的尖锐阈值,其证明使用了我们当前的结果。我们还为迭代和集建立了类似的尖锐临界值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The sharp doubling threshold for approximate convexity

We show for A , B R d $A,B\subset \mathbb {R}^d$ of equal volume and t ( 0 , 1 / 2 ] $t\in (0,1/2]$ that if | t A + ( 1 t ) B | < ( 1 + t d ) | A | $|tA+(1-t)B|&lt; (1+t^d)|A|$ , then (up to translation) | co ( A B ) | / | A | $|\operatorname{co}(A\cup B)|/|A|$ is bounded. This establishes the sharp threshold for the quantitative stability of the Brunn–Minkowski inequality recently established by Figalli, van Hintum, and Tiba, the proof of which uses our current result. We additionally establish a similar sharp threshold for iterated sumsets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信