气候变化-污染-地球生物群的关系:系统思维 "小综述

IF 5.7 2区 生物学
Jake M. Robinson, Craig Liddicoat, Xin Sun, Sunita Ramesh, Scott Hawken, Kevin Lee, Joel Brame, Nicole W. Fickling, Emma Kuhn, Claire Hayward, Sonali Deshmukh, Kate Robinson, Christian Cando-Dumancela, Martin F. Breed
{"title":"气候变化-污染-地球生物群的关系:系统思维 \"小综述","authors":"Jake M. Robinson,&nbsp;Craig Liddicoat,&nbsp;Xin Sun,&nbsp;Sunita Ramesh,&nbsp;Scott Hawken,&nbsp;Kevin Lee,&nbsp;Joel Brame,&nbsp;Nicole W. Fickling,&nbsp;Emma Kuhn,&nbsp;Claire Hayward,&nbsp;Sonali Deshmukh,&nbsp;Kate Robinson,&nbsp;Christian Cando-Dumancela,&nbsp;Martin F. Breed","doi":"10.1111/1751-7915.70018","DOIUrl":null,"url":null,"abstract":"<p>The interrelationship between climate change, pollution and the aerobiome (the microbiome of the air) is a complex ecological dynamic with profound implications for human and ecosystem health. This mini-review explores the multifaceted relationships among these factors. By synthesising existing research and integrating interdisciplinary perspectives, we examine the mechanisms driving interactions within the climate change–pollution–aerobiome nexus. We also explore synergistic and cascading effects and potential impacts on human health (including both communicable and non-communicable diseases) and that of wider ecosystems. Based on our mini-review results, climate change influences air pollution and, independently, air pollution affects the composition, diversity and activity of the aerobiome. However, we apply a ‘systems thinking’ approach and create a set of systems diagrams to show that climate change likely influences the aerobiome (including bacteria and fungi) via climate change–pollution interactions in complex ways. Due to the inherent complexity of these systems, we emphasise the importance of holistic and/or interdisciplinary approaches and collaborative efforts in understanding this nexus to safeguard planetary health in an era of rapid environmental change.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70018","citationCount":"0","resultStr":"{\"title\":\"The climate change–pollution–aerobiome nexus: A ‘systems thinking’ mini-review\",\"authors\":\"Jake M. Robinson,&nbsp;Craig Liddicoat,&nbsp;Xin Sun,&nbsp;Sunita Ramesh,&nbsp;Scott Hawken,&nbsp;Kevin Lee,&nbsp;Joel Brame,&nbsp;Nicole W. Fickling,&nbsp;Emma Kuhn,&nbsp;Claire Hayward,&nbsp;Sonali Deshmukh,&nbsp;Kate Robinson,&nbsp;Christian Cando-Dumancela,&nbsp;Martin F. Breed\",\"doi\":\"10.1111/1751-7915.70018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The interrelationship between climate change, pollution and the aerobiome (the microbiome of the air) is a complex ecological dynamic with profound implications for human and ecosystem health. This mini-review explores the multifaceted relationships among these factors. By synthesising existing research and integrating interdisciplinary perspectives, we examine the mechanisms driving interactions within the climate change–pollution–aerobiome nexus. We also explore synergistic and cascading effects and potential impacts on human health (including both communicable and non-communicable diseases) and that of wider ecosystems. Based on our mini-review results, climate change influences air pollution and, independently, air pollution affects the composition, diversity and activity of the aerobiome. However, we apply a ‘systems thinking’ approach and create a set of systems diagrams to show that climate change likely influences the aerobiome (including bacteria and fungi) via climate change–pollution interactions in complex ways. Due to the inherent complexity of these systems, we emphasise the importance of holistic and/or interdisciplinary approaches and collaborative efforts in understanding this nexus to safeguard planetary health in an era of rapid environmental change.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70018\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气候变化、污染和空气生物群(空气中的微生物群)之间的相互关系是一种复杂的生态动态关系,对人类和生态系统的健康有着深远的影响。这篇微型综述探讨了这些因素之间的多方面关系。通过综合现有研究和整合跨学科视角,我们探讨了气候变化-污染-空气生物群之间相互作用的驱动机制。我们还探讨了协同效应和连带效应,以及对人类健康(包括传染性和非传染性疾病)和更广泛生态系统的潜在影响。根据我们的微型综述结果,气候变化会影响空气污染,而空气污染又会独立地影响空气生物群的组成、多样性和活性。然而,我们运用了 "系统思维 "方法,绘制了一组系统图,以表明气候变化很可能通过气候变化与污染之间复杂的相互作用影响着空气生物群(包括细菌和真菌)。由于这些系统固有的复杂性,我们强调必须采用整体和/或跨学科方法,通力合作,才能理解这种关系,从而在环境快速变化的时代保障地球健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The climate change–pollution–aerobiome nexus: A ‘systems thinking’ mini-review

The climate change–pollution–aerobiome nexus: A ‘systems thinking’ mini-review

The interrelationship between climate change, pollution and the aerobiome (the microbiome of the air) is a complex ecological dynamic with profound implications for human and ecosystem health. This mini-review explores the multifaceted relationships among these factors. By synthesising existing research and integrating interdisciplinary perspectives, we examine the mechanisms driving interactions within the climate change–pollution–aerobiome nexus. We also explore synergistic and cascading effects and potential impacts on human health (including both communicable and non-communicable diseases) and that of wider ecosystems. Based on our mini-review results, climate change influences air pollution and, independently, air pollution affects the composition, diversity and activity of the aerobiome. However, we apply a ‘systems thinking’ approach and create a set of systems diagrams to show that climate change likely influences the aerobiome (including bacteria and fungi) via climate change–pollution interactions in complex ways. Due to the inherent complexity of these systems, we emphasise the importance of holistic and/or interdisciplinary approaches and collaborative efforts in understanding this nexus to safeguard planetary health in an era of rapid environmental change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信