{"title":"针对二元结果的修正泊松回归和最小二乘回归分析的 Firth 型惩罚方法","authors":"Satoshi Uno, Hisashi Noma, Masahiko Gosho","doi":"10.1002/bimj.202400004","DOIUrl":null,"url":null,"abstract":"<p>The modified Poisson and least-squares regression analyses for binary outcomes have been widely used as effective multivariable analysis methods to provide risk ratio and risk difference estimates in clinical and epidemiological studies. However, there is no certain evidence that assessed their operating characteristics under small and sparse data settings and no effective methods have been proposed for these regression analyses to address this issue. In this article, we show that the modified Poisson regression provides seriously biased estimates under small and sparse data settings. In addition, the modified least-squares regression provides unbiased estimates under these settings. We further show that the ordinary robust variance estimators for both of the methods have certain biases under situations that involve small or moderate sample sizes. To address these issues, we propose the Firth-type penalized methods for the modified Poisson and least-squares regressions. The adjustment methods lead to a more accurate and stable risk ratio estimator under small and sparse data settings, although the risk difference estimator is not invariant. In addition, to improve the inferences of the effect measures, we provide an improved robust variance estimator for these regression analyses. We conducted extensive simulation studies to assess the performances of the proposed methods under real-world conditions and found that the accuracies of the point and interval estimations were markedly improved by the proposed methods. We illustrate the effectiveness of these methods by applying them to a clinical study of epilepsy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202400004","citationCount":"0","resultStr":"{\"title\":\"Firth-Type Penalized Methods of the Modified Poisson and Least-Squares Regression Analyses for Binary Outcomes\",\"authors\":\"Satoshi Uno, Hisashi Noma, Masahiko Gosho\",\"doi\":\"10.1002/bimj.202400004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The modified Poisson and least-squares regression analyses for binary outcomes have been widely used as effective multivariable analysis methods to provide risk ratio and risk difference estimates in clinical and epidemiological studies. However, there is no certain evidence that assessed their operating characteristics under small and sparse data settings and no effective methods have been proposed for these regression analyses to address this issue. In this article, we show that the modified Poisson regression provides seriously biased estimates under small and sparse data settings. In addition, the modified least-squares regression provides unbiased estimates under these settings. We further show that the ordinary robust variance estimators for both of the methods have certain biases under situations that involve small or moderate sample sizes. To address these issues, we propose the Firth-type penalized methods for the modified Poisson and least-squares regressions. The adjustment methods lead to a more accurate and stable risk ratio estimator under small and sparse data settings, although the risk difference estimator is not invariant. In addition, to improve the inferences of the effect measures, we provide an improved robust variance estimator for these regression analyses. We conducted extensive simulation studies to assess the performances of the proposed methods under real-world conditions and found that the accuracies of the point and interval estimations were markedly improved by the proposed methods. We illustrate the effectiveness of these methods by applying them to a clinical study of epilepsy.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202400004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202400004\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202400004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Firth-Type Penalized Methods of the Modified Poisson and Least-Squares Regression Analyses for Binary Outcomes
The modified Poisson and least-squares regression analyses for binary outcomes have been widely used as effective multivariable analysis methods to provide risk ratio and risk difference estimates in clinical and epidemiological studies. However, there is no certain evidence that assessed their operating characteristics under small and sparse data settings and no effective methods have been proposed for these regression analyses to address this issue. In this article, we show that the modified Poisson regression provides seriously biased estimates under small and sparse data settings. In addition, the modified least-squares regression provides unbiased estimates under these settings. We further show that the ordinary robust variance estimators for both of the methods have certain biases under situations that involve small or moderate sample sizes. To address these issues, we propose the Firth-type penalized methods for the modified Poisson and least-squares regressions. The adjustment methods lead to a more accurate and stable risk ratio estimator under small and sparse data settings, although the risk difference estimator is not invariant. In addition, to improve the inferences of the effect measures, we provide an improved robust variance estimator for these regression analyses. We conducted extensive simulation studies to assess the performances of the proposed methods under real-world conditions and found that the accuracies of the point and interval estimations were markedly improved by the proposed methods. We illustrate the effectiveness of these methods by applying them to a clinical study of epilepsy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.