Moritz Fabian Danzer, Andreas Faldum, Thorsten Simon, Barbara Hero, Rene Schmidt
{"title":"多状态马尔可夫模型中具有多个时间到事件结果的临床试验的确证自适应设计","authors":"Moritz Fabian Danzer, Andreas Faldum, Thorsten Simon, Barbara Hero, Rene Schmidt","doi":"10.1002/bimj.202300181","DOIUrl":null,"url":null,"abstract":"<p>The analysis of multiple time-to-event outcomes in a randomized controlled clinical trial can be accomplished with existing methods. However, depending on the characteristics of the disease under investigation and the circumstances in which the study is planned, it may be of interest to conduct interim analyses and adapt the study design if necessary. Due to the expected dependency of the endpoints, the full available information on the involved endpoints may not be used for this purpose. We suggest a solution to this problem by embedding the endpoints in a multistate model. If this model is Markovian, it is possible to take the disease history of the patients into account and allow for data-dependent design adaptations. To this end, we introduce a flexible test procedure for a variety of applications, but are particularly concerned with the simultaneous consideration of progression-free survival (PFS) and overall survival (OS). This setting is of key interest in oncological trials. We conduct simulation studies to determine the properties for small sample sizes and demonstrate an application based on data from the NB2004-HR study.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 7","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300181","citationCount":"0","resultStr":"{\"title\":\"Confirmatory Adaptive Designs for Clinical Trials With Multiple Time-to-Event Outcomes in Multi-state Markov Models\",\"authors\":\"Moritz Fabian Danzer, Andreas Faldum, Thorsten Simon, Barbara Hero, Rene Schmidt\",\"doi\":\"10.1002/bimj.202300181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The analysis of multiple time-to-event outcomes in a randomized controlled clinical trial can be accomplished with existing methods. However, depending on the characteristics of the disease under investigation and the circumstances in which the study is planned, it may be of interest to conduct interim analyses and adapt the study design if necessary. Due to the expected dependency of the endpoints, the full available information on the involved endpoints may not be used for this purpose. We suggest a solution to this problem by embedding the endpoints in a multistate model. If this model is Markovian, it is possible to take the disease history of the patients into account and allow for data-dependent design adaptations. To this end, we introduce a flexible test procedure for a variety of applications, but are particularly concerned with the simultaneous consideration of progression-free survival (PFS) and overall survival (OS). This setting is of key interest in oncological trials. We conduct simulation studies to determine the properties for small sample sizes and demonstrate an application based on data from the NB2004-HR study.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"66 7\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300181\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300181\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300181","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Confirmatory Adaptive Designs for Clinical Trials With Multiple Time-to-Event Outcomes in Multi-state Markov Models
The analysis of multiple time-to-event outcomes in a randomized controlled clinical trial can be accomplished with existing methods. However, depending on the characteristics of the disease under investigation and the circumstances in which the study is planned, it may be of interest to conduct interim analyses and adapt the study design if necessary. Due to the expected dependency of the endpoints, the full available information on the involved endpoints may not be used for this purpose. We suggest a solution to this problem by embedding the endpoints in a multistate model. If this model is Markovian, it is possible to take the disease history of the patients into account and allow for data-dependent design adaptations. To this end, we introduce a flexible test procedure for a variety of applications, but are particularly concerned with the simultaneous consideration of progression-free survival (PFS) and overall survival (OS). This setting is of key interest in oncological trials. We conduct simulation studies to determine the properties for small sample sizes and demonstrate an application based on data from the NB2004-HR study.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.