实现气溶胶截面微物理的精细水平分辨率全球模拟:GCHP-TOMAS 取得的进展

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Betty Croft, Randall V. Martin, Rachel Y.-W. Chang, Liam Bindle, Sebastian D. Eastham, Lucas A. Estrada, Bonne Ford, Chi Li, Michael S. Long, Elizabeth W. Lundgren, Saptarshi Sinha, Melissa P. Sulprizio, Yidan Tang, Aaron van Donkelaar, Robert M. Yantosca, Dandan Zhang, Haihui Zhu, Jeffrey R. Pierce
{"title":"实现气溶胶截面微物理的精细水平分辨率全球模拟:GCHP-TOMAS 取得的进展","authors":"Betty Croft,&nbsp;Randall V. Martin,&nbsp;Rachel Y.-W. Chang,&nbsp;Liam Bindle,&nbsp;Sebastian D. Eastham,&nbsp;Lucas A. Estrada,&nbsp;Bonne Ford,&nbsp;Chi Li,&nbsp;Michael S. Long,&nbsp;Elizabeth W. Lundgren,&nbsp;Saptarshi Sinha,&nbsp;Melissa P. Sulprizio,&nbsp;Yidan Tang,&nbsp;Aaron van Donkelaar,&nbsp;Robert M. Yantosca,&nbsp;Dandan Zhang,&nbsp;Haihui Zhu,&nbsp;Jeffrey R. Pierce","doi":"10.1029/2023MS004094","DOIUrl":null,"url":null,"abstract":"<p>Global modeling of aerosol-particle number and size is important for understanding aerosol effects on Earth's climate and air quality. Fine-resolution global models are desirable for representing nonlinear aerosol-microphysical processes, their nonlinear interactions with dynamics and chemistry, and spatial heterogeneity. However, aerosol-microphysical simulations are computationally demanding, which can limit the achievable global horizontal resolution. Here, we present the first coupling of the TwO-Moment Aerosol Sectional (TOMAS) microphysics scheme with the High-Performance configuration of the GEOS-Chem model of atmospheric composition (GCHP), a coupling termed GCHP-TOMAS. GCHP's architecture allows massively parallel GCHP-TOMAS simulations including on the cloud, using hundreds of computing cores, faster runtimes, more memory, and finer global horizontal resolution (e.g., 25 km × 25 km, 7.8 × 10<sup>5</sup> model columns) versus the previous single-node capability of GEOS-Chem-TOMAS (tens of cores, 200 km × 250 km, 1.3 × 10<sup>4</sup> model columns). GCHP-TOMAS runtimes have near-ideal scalability with computing-core number. Simulated global-mean number concentrations increase (dominated by free-tropospheric over-ocean sub-10-nm-diameter particles) toward finer GCHP-TOMAS horizontal resolution. Increasing the horizontal resolution from 200 km × 200–50 km × 50 km increases the global monthly mean free-tropospheric total particle number by 18.5%, and over-ocean sub-10-nm-diameter particles by 39.8% at 4-km altitude. With a cascade of contributing factors, free-tropospheric particle-precursor concentrations increase (32.6% at 4-km altitude) with resolution, promoting new-particle formation and growth that outweigh coagulation changes. These nonlinear effects have the potential to revise current understanding of processes controlling global aerosol number and aerosol impacts on Earth's climate and air quality.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004094","citationCount":"0","resultStr":"{\"title\":\"Toward Fine Horizontal Resolution Global Simulations of Aerosol Sectional Microphysics: Advances Enabled by GCHP-TOMAS\",\"authors\":\"Betty Croft,&nbsp;Randall V. Martin,&nbsp;Rachel Y.-W. Chang,&nbsp;Liam Bindle,&nbsp;Sebastian D. Eastham,&nbsp;Lucas A. Estrada,&nbsp;Bonne Ford,&nbsp;Chi Li,&nbsp;Michael S. Long,&nbsp;Elizabeth W. Lundgren,&nbsp;Saptarshi Sinha,&nbsp;Melissa P. Sulprizio,&nbsp;Yidan Tang,&nbsp;Aaron van Donkelaar,&nbsp;Robert M. Yantosca,&nbsp;Dandan Zhang,&nbsp;Haihui Zhu,&nbsp;Jeffrey R. Pierce\",\"doi\":\"10.1029/2023MS004094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Global modeling of aerosol-particle number and size is important for understanding aerosol effects on Earth's climate and air quality. Fine-resolution global models are desirable for representing nonlinear aerosol-microphysical processes, their nonlinear interactions with dynamics and chemistry, and spatial heterogeneity. However, aerosol-microphysical simulations are computationally demanding, which can limit the achievable global horizontal resolution. Here, we present the first coupling of the TwO-Moment Aerosol Sectional (TOMAS) microphysics scheme with the High-Performance configuration of the GEOS-Chem model of atmospheric composition (GCHP), a coupling termed GCHP-TOMAS. GCHP's architecture allows massively parallel GCHP-TOMAS simulations including on the cloud, using hundreds of computing cores, faster runtimes, more memory, and finer global horizontal resolution (e.g., 25 km × 25 km, 7.8 × 10<sup>5</sup> model columns) versus the previous single-node capability of GEOS-Chem-TOMAS (tens of cores, 200 km × 250 km, 1.3 × 10<sup>4</sup> model columns). GCHP-TOMAS runtimes have near-ideal scalability with computing-core number. Simulated global-mean number concentrations increase (dominated by free-tropospheric over-ocean sub-10-nm-diameter particles) toward finer GCHP-TOMAS horizontal resolution. Increasing the horizontal resolution from 200 km × 200–50 km × 50 km increases the global monthly mean free-tropospheric total particle number by 18.5%, and over-ocean sub-10-nm-diameter particles by 39.8% at 4-km altitude. With a cascade of contributing factors, free-tropospheric particle-precursor concentrations increase (32.6% at 4-km altitude) with resolution, promoting new-particle formation and growth that outweigh coagulation changes. These nonlinear effects have the potential to revise current understanding of processes controlling global aerosol number and aerosol impacts on Earth's climate and air quality.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"16 10\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004094\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004094\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004094","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

气溶胶粒子数量和大小的全球模型对于了解气溶胶对地球气候和空气质量的影响非常重要。精细分辨率的全球模型对于表示非线性气溶胶微物理过程、其与动力学和化学的非线性相互作用以及空间异质性是非常理想的。然而,气溶胶微物理模拟对计算要求很高,这会限制可实现的全球水平分辨率。在这里,我们首次提出了气溶胶微观物理双矩截面(TOMAS)方案与 GEOS-Chem 大气成分模式(GCHP)高性能配置的耦合,这种耦合被称为 GCHP-TOMAS。与 GEOS-Chem-TOMAS 以前的单节点能力(数十个计算核心、200 km × 250 km、1.3 × 104 个模型列)相比,GCHP 的架构允许在云上进行大规模并行 GCHP-TOMAS 模拟,包括使用数百个计算核心、更快的运行时间、更大的内存和更精细的全球水平分辨率(例如 25 km × 25 km、7.8 × 105 个模型列)。GCHP-TOMAS 的运行时间与计算核心数量的可扩展性接近理想。随着 GCHP-TOMAS 水平分辨率的提高,模拟的全球均值数量浓度增加(主要是自由对流层海洋上空直径在 10 纳米以下的粒子)。水平分辨率从 200 千米 × 200 提高到 50 千米 × 50 千米,全球月平均自由对流层总粒子数增加了 18.5%,4 千米高度的海洋上空亚 10 纳米直径粒子数增加了 39.8%。在一系列因素的作用下,自由对流层粒子前体浓度随着分辨率的提高而增加(4 千米高度增加 32.6%),促进了新粒子的形成和增长,其影响超过了凝结变化。这些非线性效应有可能改变目前对全球气溶胶数量控制过程以及气溶胶对地球气候和空气质量影响的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toward Fine Horizontal Resolution Global Simulations of Aerosol Sectional Microphysics: Advances Enabled by GCHP-TOMAS

Toward Fine Horizontal Resolution Global Simulations of Aerosol Sectional Microphysics: Advances Enabled by GCHP-TOMAS

Global modeling of aerosol-particle number and size is important for understanding aerosol effects on Earth's climate and air quality. Fine-resolution global models are desirable for representing nonlinear aerosol-microphysical processes, their nonlinear interactions with dynamics and chemistry, and spatial heterogeneity. However, aerosol-microphysical simulations are computationally demanding, which can limit the achievable global horizontal resolution. Here, we present the first coupling of the TwO-Moment Aerosol Sectional (TOMAS) microphysics scheme with the High-Performance configuration of the GEOS-Chem model of atmospheric composition (GCHP), a coupling termed GCHP-TOMAS. GCHP's architecture allows massively parallel GCHP-TOMAS simulations including on the cloud, using hundreds of computing cores, faster runtimes, more memory, and finer global horizontal resolution (e.g., 25 km × 25 km, 7.8 × 105 model columns) versus the previous single-node capability of GEOS-Chem-TOMAS (tens of cores, 200 km × 250 km, 1.3 × 104 model columns). GCHP-TOMAS runtimes have near-ideal scalability with computing-core number. Simulated global-mean number concentrations increase (dominated by free-tropospheric over-ocean sub-10-nm-diameter particles) toward finer GCHP-TOMAS horizontal resolution. Increasing the horizontal resolution from 200 km × 200–50 km × 50 km increases the global monthly mean free-tropospheric total particle number by 18.5%, and over-ocean sub-10-nm-diameter particles by 39.8% at 4-km altitude. With a cascade of contributing factors, free-tropospheric particle-precursor concentrations increase (32.6% at 4-km altitude) with resolution, promoting new-particle formation and growth that outweigh coagulation changes. These nonlinear effects have the potential to revise current understanding of processes controlling global aerosol number and aerosol impacts on Earth's climate and air quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信