新的生物地球化学耦合建模方法可准确预测不同潮汐湿地的甲烷和二氧化碳通量

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
P. Y. Oikawa, D. Sihi, I. Forbrich, E. Fluet-Chouinard, M. Najarro, O. Thomas, J. Shahan, A. Arias-Ortiz, S. Russell, S. H. Knox, G. McNicol, J. Wolfe, L. Windham-Myers, E. Stuart-Haentjens, S. D. Bridgham, B. Needelman, R. Vargas, K. Schäfer, E. J. Ward, P. Megonigal, J. Holmquist
{"title":"新的生物地球化学耦合建模方法可准确预测不同潮汐湿地的甲烷和二氧化碳通量","authors":"P. Y. Oikawa,&nbsp;D. Sihi,&nbsp;I. Forbrich,&nbsp;E. Fluet-Chouinard,&nbsp;M. Najarro,&nbsp;O. Thomas,&nbsp;J. Shahan,&nbsp;A. Arias-Ortiz,&nbsp;S. Russell,&nbsp;S. H. Knox,&nbsp;G. McNicol,&nbsp;J. Wolfe,&nbsp;L. Windham-Myers,&nbsp;E. Stuart-Haentjens,&nbsp;S. D. Bridgham,&nbsp;B. Needelman,&nbsp;R. Vargas,&nbsp;K. Schäfer,&nbsp;E. J. Ward,&nbsp;P. Megonigal,&nbsp;J. Holmquist","doi":"10.1029/2023JG007943","DOIUrl":null,"url":null,"abstract":"<p>Tidal wetlands provide valuable ecosystem services, including storing large amounts of carbon. However, the net exchanges of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) in tidal wetlands are highly uncertain. While several biogeochemical models can operate in tidal wetlands, they have yet to be parameterized and validated against high-frequency, ecosystem-scale CO<sub>2</sub> and CH<sub>4</sub> flux measurements across diverse sites. We paired the Cohort Marsh Equilibrium Model (CMEM) with a version of the PEPRMT model called PEPRMT-Tidal, which considers the effects of water table height, sulfate, and nitrate availability on CO<sub>2</sub> and CH<sub>4</sub> emissions. Using a model-data fusion approach, we parameterized the model with three sites and validated it with two independent sites, with representation from the three marine coasts of North America. Gross primary productivity (GPP) and ecosystem respiration (R<sub>eco</sub>) modules explained, on average, 73% of the variation in CO<sub>2</sub> exchange with low model error (normalized root mean square error (nRMSE) &lt;1). The CH<sub>4</sub> module also explained the majority of variance in CH<sub>4</sub> emissions in validation sites (<i>R</i><sup>2</sup> = 0.54; nRMSE = 1.15). The PEPRMT-Tidal-CMEM model coupling is a key advance toward constraining estimates of greenhouse gas emissions across diverse North American tidal wetlands. Further analyses of model error and case studies during changing salinity conditions guide future modeling efforts regarding four main processes: (a) the influence of salinity and nitrate on GPP, (b) the influence of laterally transported dissolved inorganic C on R<sub>eco</sub>, (c) heterogeneous sulfate availability and methylotrophic methanogenesis impacts on surface CH<sub>4</sub> emissions, and (d) CH<sub>4</sub> responses to non-periodic changes in salinity.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JG007943","citationCount":"0","resultStr":"{\"title\":\"A New Coupled Biogeochemical Modeling Approach Provides Accurate Predictions of Methane and Carbon Dioxide Fluxes Across Diverse Tidal Wetlands\",\"authors\":\"P. Y. Oikawa,&nbsp;D. Sihi,&nbsp;I. Forbrich,&nbsp;E. Fluet-Chouinard,&nbsp;M. Najarro,&nbsp;O. Thomas,&nbsp;J. Shahan,&nbsp;A. Arias-Ortiz,&nbsp;S. Russell,&nbsp;S. H. Knox,&nbsp;G. McNicol,&nbsp;J. Wolfe,&nbsp;L. Windham-Myers,&nbsp;E. Stuart-Haentjens,&nbsp;S. D. Bridgham,&nbsp;B. Needelman,&nbsp;R. Vargas,&nbsp;K. Schäfer,&nbsp;E. J. Ward,&nbsp;P. Megonigal,&nbsp;J. Holmquist\",\"doi\":\"10.1029/2023JG007943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tidal wetlands provide valuable ecosystem services, including storing large amounts of carbon. However, the net exchanges of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) in tidal wetlands are highly uncertain. While several biogeochemical models can operate in tidal wetlands, they have yet to be parameterized and validated against high-frequency, ecosystem-scale CO<sub>2</sub> and CH<sub>4</sub> flux measurements across diverse sites. We paired the Cohort Marsh Equilibrium Model (CMEM) with a version of the PEPRMT model called PEPRMT-Tidal, which considers the effects of water table height, sulfate, and nitrate availability on CO<sub>2</sub> and CH<sub>4</sub> emissions. Using a model-data fusion approach, we parameterized the model with three sites and validated it with two independent sites, with representation from the three marine coasts of North America. Gross primary productivity (GPP) and ecosystem respiration (R<sub>eco</sub>) modules explained, on average, 73% of the variation in CO<sub>2</sub> exchange with low model error (normalized root mean square error (nRMSE) &lt;1). The CH<sub>4</sub> module also explained the majority of variance in CH<sub>4</sub> emissions in validation sites (<i>R</i><sup>2</sup> = 0.54; nRMSE = 1.15). The PEPRMT-Tidal-CMEM model coupling is a key advance toward constraining estimates of greenhouse gas emissions across diverse North American tidal wetlands. Further analyses of model error and case studies during changing salinity conditions guide future modeling efforts regarding four main processes: (a) the influence of salinity and nitrate on GPP, (b) the influence of laterally transported dissolved inorganic C on R<sub>eco</sub>, (c) heterogeneous sulfate availability and methylotrophic methanogenesis impacts on surface CH<sub>4</sub> emissions, and (d) CH<sub>4</sub> responses to non-periodic changes in salinity.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JG007943\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023JG007943\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JG007943","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

潮汐湿地提供宝贵的生态系统服务,包括储存大量的碳。然而,潮汐湿地中二氧化碳(CO2)和甲烷(CH4)的净交换量却非常不确定。虽然有几种生物地球化学模型可以在潮汐湿地中运行,但这些模型还有待于参数化,并根据不同地点的高频率、生态系统尺度二氧化碳和甲烷通量测量结果进行验证。我们将群落沼泽平衡模型(CMEM)与一个名为 PEPRMT-Tidal 的 PEPRMT 模型版本配对,该模型考虑了地下水位高度、硫酸盐和硝酸盐对二氧化碳和甲烷排放的影响。通过模型与数据融合的方法,我们用三个站点对模型进行了参数化,并用两个独立站点对模型进行了验证,这两个站点代表了北美的三个海洋海岸。总初级生产力(GPP)和生态系统呼吸(Reco)模块平均解释了二氧化碳交换量变化的 73%,模型误差较小(归一化均方根误差(nRMSE)<1)。CH4 模块也解释了验证地点 CH4 排放量的大部分差异(R2 = 0.54;nRMSE = 1.15)。PEPRMT-Tidal-CMEM 模型耦合是制约北美不同潮汐湿地温室气体排放估算的关键进展。对模型误差的进一步分析和盐度变化条件下的案例研究为未来有关四个主要过程的建模工作提供了指导:(a)盐度和硝酸盐对 GPP 的影响;(b)侧向迁移的溶解无机碳对 Reco 的影响;(c)异质硫酸盐供应和甲养甲烷生成对地表 CH4 排放的影响;以及(d)CH4 对盐度非周期性变化的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A New Coupled Biogeochemical Modeling Approach Provides Accurate Predictions of Methane and Carbon Dioxide Fluxes Across Diverse Tidal Wetlands

A New Coupled Biogeochemical Modeling Approach Provides Accurate Predictions of Methane and Carbon Dioxide Fluxes Across Diverse Tidal Wetlands

Tidal wetlands provide valuable ecosystem services, including storing large amounts of carbon. However, the net exchanges of carbon dioxide (CO2) and methane (CH4) in tidal wetlands are highly uncertain. While several biogeochemical models can operate in tidal wetlands, they have yet to be parameterized and validated against high-frequency, ecosystem-scale CO2 and CH4 flux measurements across diverse sites. We paired the Cohort Marsh Equilibrium Model (CMEM) with a version of the PEPRMT model called PEPRMT-Tidal, which considers the effects of water table height, sulfate, and nitrate availability on CO2 and CH4 emissions. Using a model-data fusion approach, we parameterized the model with three sites and validated it with two independent sites, with representation from the three marine coasts of North America. Gross primary productivity (GPP) and ecosystem respiration (Reco) modules explained, on average, 73% of the variation in CO2 exchange with low model error (normalized root mean square error (nRMSE) <1). The CH4 module also explained the majority of variance in CH4 emissions in validation sites (R2 = 0.54; nRMSE = 1.15). The PEPRMT-Tidal-CMEM model coupling is a key advance toward constraining estimates of greenhouse gas emissions across diverse North American tidal wetlands. Further analyses of model error and case studies during changing salinity conditions guide future modeling efforts regarding four main processes: (a) the influence of salinity and nitrate on GPP, (b) the influence of laterally transported dissolved inorganic C on Reco, (c) heterogeneous sulfate availability and methylotrophic methanogenesis impacts on surface CH4 emissions, and (d) CH4 responses to non-periodic changes in salinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信