P. Y. Oikawa, D. Sihi, I. Forbrich, E. Fluet-Chouinard, M. Najarro, O. Thomas, J. Shahan, A. Arias-Ortiz, S. Russell, S. H. Knox, G. McNicol, J. Wolfe, L. Windham-Myers, E. Stuart-Haentjens, S. D. Bridgham, B. Needelman, R. Vargas, K. Schäfer, E. J. Ward, P. Megonigal, J. Holmquist
{"title":"新的生物地球化学耦合建模方法可准确预测不同潮汐湿地的甲烷和二氧化碳通量","authors":"P. Y. Oikawa, D. Sihi, I. Forbrich, E. Fluet-Chouinard, M. Najarro, O. Thomas, J. Shahan, A. Arias-Ortiz, S. Russell, S. H. Knox, G. McNicol, J. Wolfe, L. Windham-Myers, E. Stuart-Haentjens, S. D. Bridgham, B. Needelman, R. Vargas, K. Schäfer, E. J. Ward, P. Megonigal, J. Holmquist","doi":"10.1029/2023JG007943","DOIUrl":null,"url":null,"abstract":"<p>Tidal wetlands provide valuable ecosystem services, including storing large amounts of carbon. However, the net exchanges of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) in tidal wetlands are highly uncertain. While several biogeochemical models can operate in tidal wetlands, they have yet to be parameterized and validated against high-frequency, ecosystem-scale CO<sub>2</sub> and CH<sub>4</sub> flux measurements across diverse sites. We paired the Cohort Marsh Equilibrium Model (CMEM) with a version of the PEPRMT model called PEPRMT-Tidal, which considers the effects of water table height, sulfate, and nitrate availability on CO<sub>2</sub> and CH<sub>4</sub> emissions. Using a model-data fusion approach, we parameterized the model with three sites and validated it with two independent sites, with representation from the three marine coasts of North America. Gross primary productivity (GPP) and ecosystem respiration (R<sub>eco</sub>) modules explained, on average, 73% of the variation in CO<sub>2</sub> exchange with low model error (normalized root mean square error (nRMSE) <1). The CH<sub>4</sub> module also explained the majority of variance in CH<sub>4</sub> emissions in validation sites (<i>R</i><sup>2</sup> = 0.54; nRMSE = 1.15). The PEPRMT-Tidal-CMEM model coupling is a key advance toward constraining estimates of greenhouse gas emissions across diverse North American tidal wetlands. Further analyses of model error and case studies during changing salinity conditions guide future modeling efforts regarding four main processes: (a) the influence of salinity and nitrate on GPP, (b) the influence of laterally transported dissolved inorganic C on R<sub>eco</sub>, (c) heterogeneous sulfate availability and methylotrophic methanogenesis impacts on surface CH<sub>4</sub> emissions, and (d) CH<sub>4</sub> responses to non-periodic changes in salinity.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JG007943","citationCount":"0","resultStr":"{\"title\":\"A New Coupled Biogeochemical Modeling Approach Provides Accurate Predictions of Methane and Carbon Dioxide Fluxes Across Diverse Tidal Wetlands\",\"authors\":\"P. Y. Oikawa, D. Sihi, I. Forbrich, E. Fluet-Chouinard, M. Najarro, O. Thomas, J. Shahan, A. Arias-Ortiz, S. Russell, S. H. Knox, G. McNicol, J. Wolfe, L. Windham-Myers, E. Stuart-Haentjens, S. D. Bridgham, B. Needelman, R. Vargas, K. Schäfer, E. J. Ward, P. Megonigal, J. Holmquist\",\"doi\":\"10.1029/2023JG007943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tidal wetlands provide valuable ecosystem services, including storing large amounts of carbon. However, the net exchanges of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) in tidal wetlands are highly uncertain. While several biogeochemical models can operate in tidal wetlands, they have yet to be parameterized and validated against high-frequency, ecosystem-scale CO<sub>2</sub> and CH<sub>4</sub> flux measurements across diverse sites. We paired the Cohort Marsh Equilibrium Model (CMEM) with a version of the PEPRMT model called PEPRMT-Tidal, which considers the effects of water table height, sulfate, and nitrate availability on CO<sub>2</sub> and CH<sub>4</sub> emissions. Using a model-data fusion approach, we parameterized the model with three sites and validated it with two independent sites, with representation from the three marine coasts of North America. Gross primary productivity (GPP) and ecosystem respiration (R<sub>eco</sub>) modules explained, on average, 73% of the variation in CO<sub>2</sub> exchange with low model error (normalized root mean square error (nRMSE) <1). The CH<sub>4</sub> module also explained the majority of variance in CH<sub>4</sub> emissions in validation sites (<i>R</i><sup>2</sup> = 0.54; nRMSE = 1.15). The PEPRMT-Tidal-CMEM model coupling is a key advance toward constraining estimates of greenhouse gas emissions across diverse North American tidal wetlands. Further analyses of model error and case studies during changing salinity conditions guide future modeling efforts regarding four main processes: (a) the influence of salinity and nitrate on GPP, (b) the influence of laterally transported dissolved inorganic C on R<sub>eco</sub>, (c) heterogeneous sulfate availability and methylotrophic methanogenesis impacts on surface CH<sub>4</sub> emissions, and (d) CH<sub>4</sub> responses to non-periodic changes in salinity.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JG007943\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023JG007943\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JG007943","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A New Coupled Biogeochemical Modeling Approach Provides Accurate Predictions of Methane and Carbon Dioxide Fluxes Across Diverse Tidal Wetlands
Tidal wetlands provide valuable ecosystem services, including storing large amounts of carbon. However, the net exchanges of carbon dioxide (CO2) and methane (CH4) in tidal wetlands are highly uncertain. While several biogeochemical models can operate in tidal wetlands, they have yet to be parameterized and validated against high-frequency, ecosystem-scale CO2 and CH4 flux measurements across diverse sites. We paired the Cohort Marsh Equilibrium Model (CMEM) with a version of the PEPRMT model called PEPRMT-Tidal, which considers the effects of water table height, sulfate, and nitrate availability on CO2 and CH4 emissions. Using a model-data fusion approach, we parameterized the model with three sites and validated it with two independent sites, with representation from the three marine coasts of North America. Gross primary productivity (GPP) and ecosystem respiration (Reco) modules explained, on average, 73% of the variation in CO2 exchange with low model error (normalized root mean square error (nRMSE) <1). The CH4 module also explained the majority of variance in CH4 emissions in validation sites (R2 = 0.54; nRMSE = 1.15). The PEPRMT-Tidal-CMEM model coupling is a key advance toward constraining estimates of greenhouse gas emissions across diverse North American tidal wetlands. Further analyses of model error and case studies during changing salinity conditions guide future modeling efforts regarding four main processes: (a) the influence of salinity and nitrate on GPP, (b) the influence of laterally transported dissolved inorganic C on Reco, (c) heterogeneous sulfate availability and methylotrophic methanogenesis impacts on surface CH4 emissions, and (d) CH4 responses to non-periodic changes in salinity.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology