作为广义詹森不等式的图形凸壳边界

IF 0.8 3区 数学 Q2 MATHEMATICS
Ilja Klebanov
{"title":"作为广义詹森不等式的图形凸壳边界","authors":"Ilja Klebanov","doi":"10.1112/blms.13116","DOIUrl":null,"url":null,"abstract":"<p>Jensen's inequality is ubiquitous in measure and probability theory, statistics, machine learning, information theory and many other areas of mathematics and data science. It states that, for any convex function <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>K</mi>\n <mo>→</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$f\\colon K \\rightarrow \\mathbb {R}$</annotation>\n </semantics></math> defined on a convex domain <span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n <mo>⊆</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$K \\subseteq \\mathbb {R}^{d}$</annotation>\n </semantics></math> and any random variable <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> taking values in <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>[</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n <mo>]</mo>\n <mo>⩾</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>[</mo>\n <mi>X</mi>\n <mo>]</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbb {E}[f(X)] \\geqslant f(\\mathbb {E}[X])$</annotation>\n </semantics></math>. In this paper, sharp upper and lower bounds on <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>[</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n <mo>]</mo>\n </mrow>\n <annotation>$\\mathbb {E}[f(X)]$</annotation>\n </semantics></math>, termed ‘graph convex hull bounds’, are derived for arbitrary functions <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> on arbitrary domains <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, thereby extensively generalizing Jensen's inequality. The derivation of these bounds necessitates the investigation of the convex hull of the graph of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math>, which can be challenging for complex functions. On the other hand, once these inequalities are established, they hold, just like Jensen's inequality, for <i>any</i> <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-valued random variable <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>. Therefore, these bounds are of particular interest in cases where <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is relatively simple and <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is complicated or unknown. Both finite- and infinite-dimensional domains and codomains of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> are covered as well as analogous bounds for conditional expectations and Markov operators.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3061-3074"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13116","citationCount":"0","resultStr":"{\"title\":\"Graph convex hull bounds as generalized Jensen inequalities\",\"authors\":\"Ilja Klebanov\",\"doi\":\"10.1112/blms.13116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Jensen's inequality is ubiquitous in measure and probability theory, statistics, machine learning, information theory and many other areas of mathematics and data science. It states that, for any convex function <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>:</mo>\\n <mi>K</mi>\\n <mo>→</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$f\\\\colon K \\\\rightarrow \\\\mathbb {R}$</annotation>\\n </semantics></math> defined on a convex domain <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>K</mi>\\n <mo>⊆</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$K \\\\subseteq \\\\mathbb {R}^{d}$</annotation>\\n </semantics></math> and any random variable <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> taking values in <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mo>[</mo>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n <mo>]</mo>\\n <mo>⩾</mo>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>[</mo>\\n <mi>X</mi>\\n <mo>]</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathbb {E}[f(X)] \\\\geqslant f(\\\\mathbb {E}[X])$</annotation>\\n </semantics></math>. In this paper, sharp upper and lower bounds on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mo>[</mo>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$\\\\mathbb {E}[f(X)]$</annotation>\\n </semantics></math>, termed ‘graph convex hull bounds’, are derived for arbitrary functions <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> on arbitrary domains <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>, thereby extensively generalizing Jensen's inequality. The derivation of these bounds necessitates the investigation of the convex hull of the graph of <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math>, which can be challenging for complex functions. On the other hand, once these inequalities are established, they hold, just like Jensen's inequality, for <i>any</i> <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>-valued random variable <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>. Therefore, these bounds are of particular interest in cases where <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> is relatively simple and <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> is complicated or unknown. Both finite- and infinite-dimensional domains and codomains of <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> are covered as well as analogous bounds for conditional expectations and Markov operators.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 10\",\"pages\":\"3061-3074\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13116\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13116\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13116","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

詹森不等式在度量和概率论、统计学、机器学习、信息论以及数学和数据科学的许多其他领域无处不在。它指出,对于定义在凸域 K ⊆ R d $K \subseteq \mathbb {R}^{d}$ 上的任何凸函数 f : K → R $f\colon K \rightarrow \mathbb {R}$ 和在 K $K$ 中取值的任何随机变量 X $X$ ,E [ f ( X ) ] ⩾ f ( E [ X ) ] ⩾ E [ X ) ⩾ f ( E [ X ] ) $\mathbb {E}[f(X)] \geqslant f(\mathbb {E}[X])$ .本文提出了关于 E [ f ( X ) ] 的尖锐上界和下界。 $\mathbb {E}[f(X)]$ 被称为 "图凸壳边界",是针对任意域 K $K$ 上的任意函数 f $f$ 推导的,从而广泛推广了詹森不等式。这些边界的推导需要研究 f $f$ 的图凸壳,这对复杂函数来说可能具有挑战性。另一方面,一旦建立了这些不等式,它们就会像詹森不等式一样,对于任何 K $K$ 有值随机变量 X $X$ 都成立。因此,在 f $f$ 相对简单而 X $X$ 复杂或未知的情况下,这些界限特别有意义。本文涵盖了 f $f$ 的有限维和无限维域和编域,以及条件期望和马尔可夫算子的类似边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Graph convex hull bounds as generalized Jensen inequalities

Graph convex hull bounds as generalized Jensen inequalities

Jensen's inequality is ubiquitous in measure and probability theory, statistics, machine learning, information theory and many other areas of mathematics and data science. It states that, for any convex function f : K R $f\colon K \rightarrow \mathbb {R}$ defined on a convex domain K R d $K \subseteq \mathbb {R}^{d}$ and any random variable X $X$ taking values in K $K$ , E [ f ( X ) ] f ( E [ X ] ) $\mathbb {E}[f(X)] \geqslant f(\mathbb {E}[X])$ . In this paper, sharp upper and lower bounds on E [ f ( X ) ] $\mathbb {E}[f(X)]$ , termed ‘graph convex hull bounds’, are derived for arbitrary functions f $f$ on arbitrary domains K $K$ , thereby extensively generalizing Jensen's inequality. The derivation of these bounds necessitates the investigation of the convex hull of the graph of f $f$ , which can be challenging for complex functions. On the other hand, once these inequalities are established, they hold, just like Jensen's inequality, for any K $K$ -valued random variable X $X$ . Therefore, these bounds are of particular interest in cases where f $f$ is relatively simple and X $X$ is complicated or unknown. Both finite- and infinite-dimensional domains and codomains of f $f$ are covered as well as analogous bounds for conditional expectations and Markov operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信