伊朗与 PM2.5 和 PM10 相关的致癌和非致癌风险评估

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Khatereh Anbari, Pierre Sicard, Yusef Omidi Khaniabadi, Hasan Raja Naqvi, Reza Fouladi Fard, Rajab Rashidi
{"title":"伊朗与 PM2.5 和 PM10 相关的致癌和非致癌风险评估","authors":"Khatereh Anbari,&nbsp;Pierre Sicard,&nbsp;Yusef Omidi Khaniabadi,&nbsp;Hasan Raja Naqvi,&nbsp;Reza Fouladi Fard,&nbsp;Rajab Rashidi","doi":"10.1007/s10874-024-09463-0","DOIUrl":null,"url":null,"abstract":"<div><p>High levels of particulate matters in the air are a major health issue in Middle East leading to adverse health effects. In this study, we have simultaneously investigated (i) the spatio-temporal distribution of ambient particulate matters in a city located in the Middle East (Khorramabad) over the time period 2021–2022; and (ii) PM<sub>2.5</sub> and PM<sub>10</sub>-related carcinogenic and non-carcinogenic risk assessment to exposure. For the risk assessment, hourly PM<sub>2.5</sub> and PM<sub>10</sub> data were obtained from three monitoring stations located in the city. A methodology for risk assessment recommended by the United State Environmental Protection Agency was used for all age groups. The excess lifetime cancer risk (ELCR) and the hazard quotient (HQ) were estimated, and the backward trajectories were assessed by the Hybrid Single-Particle Lagrangian Integrated Trajectory model. The Aerosol Optical Depth from 0 to 1000 nm was applied to observe the variations of atmospheric aerosols. The results showed that the annual PM<sub>2.5</sub> and PM<sub>10</sub> mean concentrations during 2021 and 2022 were exceeded the World Health Organization limit value for human health protection. In 2021 and 2022, 2.2-148.3 and 1.3-134.4 cancers per 1,000,000 inhabitants can be related to ambient PM<sub>2.5</sub> exposure. The HQ values for PM<sub>2.5</sub> and PM<sub>10</sub> were 4.7 and 1.3 in 2021, and 3.8 and 1.1 in 2022, i.e., the risk for human health is expected. To reduce the adverse health effects related to particulate matters, air emissions control strategies are required.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"81 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PM2.5 and PM10-related carcinogenic and non-carcinogenic risk assessment in Iran\",\"authors\":\"Khatereh Anbari,&nbsp;Pierre Sicard,&nbsp;Yusef Omidi Khaniabadi,&nbsp;Hasan Raja Naqvi,&nbsp;Reza Fouladi Fard,&nbsp;Rajab Rashidi\",\"doi\":\"10.1007/s10874-024-09463-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High levels of particulate matters in the air are a major health issue in Middle East leading to adverse health effects. In this study, we have simultaneously investigated (i) the spatio-temporal distribution of ambient particulate matters in a city located in the Middle East (Khorramabad) over the time period 2021–2022; and (ii) PM<sub>2.5</sub> and PM<sub>10</sub>-related carcinogenic and non-carcinogenic risk assessment to exposure. For the risk assessment, hourly PM<sub>2.5</sub> and PM<sub>10</sub> data were obtained from three monitoring stations located in the city. A methodology for risk assessment recommended by the United State Environmental Protection Agency was used for all age groups. The excess lifetime cancer risk (ELCR) and the hazard quotient (HQ) were estimated, and the backward trajectories were assessed by the Hybrid Single-Particle Lagrangian Integrated Trajectory model. The Aerosol Optical Depth from 0 to 1000 nm was applied to observe the variations of atmospheric aerosols. The results showed that the annual PM<sub>2.5</sub> and PM<sub>10</sub> mean concentrations during 2021 and 2022 were exceeded the World Health Organization limit value for human health protection. In 2021 and 2022, 2.2-148.3 and 1.3-134.4 cancers per 1,000,000 inhabitants can be related to ambient PM<sub>2.5</sub> exposure. The HQ values for PM<sub>2.5</sub> and PM<sub>10</sub> were 4.7 and 1.3 in 2021, and 3.8 and 1.1 in 2022, i.e., the risk for human health is expected. To reduce the adverse health effects related to particulate matters, air emissions control strategies are required.</p></div>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-024-09463-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-024-09463-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

空气中的高浓度颗粒物是中东地区的一个主要健康问题,会对健康造成不良影响。在这项研究中,我们同时调查了:(i) 2021-2022 年期间中东某城市(霍拉马巴德)环境颗粒物的时空分布;(ii) PM2.5 和 PM10 相关的致癌和非致癌暴露风险评估。为进行风险评估,从该市的三个监测站获得了每小时 PM2.5 和 PM10 的数据。对所有年龄组的人都采用了美国环境保护局推荐的风险评估方法。估算了超额终生致癌风险(ELCR)和危害商数(HQ),并利用混合单粒子拉格朗日综合轨迹模型评估了后向轨迹。应用 0 至 1000 nm 的气溶胶光学深度观测大气气溶胶的变化。结果表明,2021 年和 2022 年 PM2.5 和 PM10 的年平均浓度超过了世界卫生组织规定的人类健康保护限值。2021 年和 2022 年,每 100 万居民中有 2.2-148.3 例癌症和 1.3-134.4 例癌症与环境 PM2.5 暴露有关。2021 年,PM2.5 和 PM10 的 HQ 值分别为 4.7 和 1.3,2022 年分别为 3.8 和 1.1,即预计会对人类健康造成风险。为减少与颗粒物有关的不良健康影响,需要采取空气排放控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PM2.5 and PM10-related carcinogenic and non-carcinogenic risk assessment in Iran

High levels of particulate matters in the air are a major health issue in Middle East leading to adverse health effects. In this study, we have simultaneously investigated (i) the spatio-temporal distribution of ambient particulate matters in a city located in the Middle East (Khorramabad) over the time period 2021–2022; and (ii) PM2.5 and PM10-related carcinogenic and non-carcinogenic risk assessment to exposure. For the risk assessment, hourly PM2.5 and PM10 data were obtained from three monitoring stations located in the city. A methodology for risk assessment recommended by the United State Environmental Protection Agency was used for all age groups. The excess lifetime cancer risk (ELCR) and the hazard quotient (HQ) were estimated, and the backward trajectories were assessed by the Hybrid Single-Particle Lagrangian Integrated Trajectory model. The Aerosol Optical Depth from 0 to 1000 nm was applied to observe the variations of atmospheric aerosols. The results showed that the annual PM2.5 and PM10 mean concentrations during 2021 and 2022 were exceeded the World Health Organization limit value for human health protection. In 2021 and 2022, 2.2-148.3 and 1.3-134.4 cancers per 1,000,000 inhabitants can be related to ambient PM2.5 exposure. The HQ values for PM2.5 and PM10 were 4.7 and 1.3 in 2021, and 3.8 and 1.1 in 2022, i.e., the risk for human health is expected. To reduce the adverse health effects related to particulate matters, air emissions control strategies are required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信