子集上脉冲半流的熵

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Dandan Cheng, Zhiming Li
{"title":"子集上脉冲半流的熵","authors":"Dandan Cheng,&nbsp;Zhiming Li","doi":"10.1007/s10955-024-03351-3","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the theory of Carathéodory structure, this paper introduces several definitions of entropies for impulsive semi-flows on arbitrary subsets. We compare these definitions and establish relations of these definitions. We show an inverse variational principle between topological <span>\\(\\tau \\)</span>-entropy and measure theoretic <span>\\(\\tau \\)</span>-entropy. Moreover, a variational principle of packing <span>\\(\\tau \\)</span> entropy of impulsive semi-flows is established.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 10","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy of Impulsive Semi-flow on Subsets\",\"authors\":\"Dandan Cheng,&nbsp;Zhiming Li\",\"doi\":\"10.1007/s10955-024-03351-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the theory of Carathéodory structure, this paper introduces several definitions of entropies for impulsive semi-flows on arbitrary subsets. We compare these definitions and establish relations of these definitions. We show an inverse variational principle between topological <span>\\\\(\\\\tau \\\\)</span>-entropy and measure theoretic <span>\\\\(\\\\tau \\\\)</span>-entropy. Moreover, a variational principle of packing <span>\\\\(\\\\tau \\\\)</span> entropy of impulsive semi-flows is established.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"191 10\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-024-03351-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03351-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文以卡拉瑟奥多里结构理论为基础,介绍了任意子集上脉冲半流的几种熵定义。我们比较了这些定义,并建立了这些定义之间的关系。我们展示了拓扑(\tau \)熵与度量理论(\tau \)熵之间的逆变换原理。此外,我们还建立了脉冲半流的打包熵的变分原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy of Impulsive Semi-flow on Subsets

Based on the theory of Carathéodory structure, this paper introduces several definitions of entropies for impulsive semi-flows on arbitrary subsets. We compare these definitions and establish relations of these definitions. We show an inverse variational principle between topological \(\tau \)-entropy and measure theoretic \(\tau \)-entropy. Moreover, a variational principle of packing \(\tau \) entropy of impulsive semi-flows is established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信