Alma van der Merwe, Madelein Thiersen, Hugo J. Woerdeman
{"title":"四元偏斜-赫米特矩阵的 c 数值范围是凸的","authors":"Alma van der Merwe, Madelein Thiersen, Hugo J. Woerdeman","doi":"10.1007/s43036-024-00391-0","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the <i>c</i>-numerical range of a non-scalar skew-Hermitian quaternion matrix is convex. In fact, included in our result is that the <i>c</i>-numerical range of a skew-Hermitian matrix is a rotation invariant subset of the quaternions with zero real parts.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-024-00391-0.pdf","citationCount":"0","resultStr":"{\"title\":\"The c-numerical range of a quaternion skew-Hermitian matrix is convex\",\"authors\":\"Alma van der Merwe, Madelein Thiersen, Hugo J. Woerdeman\",\"doi\":\"10.1007/s43036-024-00391-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that the <i>c</i>-numerical range of a non-scalar skew-Hermitian quaternion matrix is convex. In fact, included in our result is that the <i>c</i>-numerical range of a skew-Hermitian matrix is a rotation invariant subset of the quaternions with zero real parts.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43036-024-00391-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00391-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00391-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了非标度偏斜-赫米特四元数矩阵的 c 数值范围是凸的。事实上,我们的结果还包括:偏斜-赫米特矩阵的 c 数值范围是实部为零的四元数的旋转不变子集。
The c-numerical range of a quaternion skew-Hermitian matrix is convex
We show that the c-numerical range of a non-scalar skew-Hermitian quaternion matrix is convex. In fact, included in our result is that the c-numerical range of a skew-Hermitian matrix is a rotation invariant subset of the quaternions with zero real parts.