生物膜基质:多层生物分子和抗菌剂的防御屏障

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Harini Ragupathi, Mahamahima Muthuswamy Pushparaj, Sarves Mani Gopi, Deenadayalan Karaiyagowder Govindarajan, Kumaravel Kandaswamy
{"title":"生物膜基质:多层生物分子和抗菌剂的防御屏障","authors":"Harini Ragupathi,&nbsp;Mahamahima Muthuswamy Pushparaj,&nbsp;Sarves Mani Gopi,&nbsp;Deenadayalan Karaiyagowder Govindarajan,&nbsp;Kumaravel Kandaswamy","doi":"10.1007/s00203-024-04157-3","DOIUrl":null,"url":null,"abstract":"<div><p>Bacterial cells often exist in the form of sessile aggregates known as biofilms, which are polymicrobial in nature and can produce slimy Extracellular Polymeric Substances (EPS). EPS is often referred to as a biofilm matrix and is a heterogeneous mixture of various biomolecules such as polysaccharides, proteins, and extracellular DNA/RNA (eDNA/RNA). In addition, bacteriophage (phage) was also found to be an integral component of the matrix and can serve as a protective barrier. In recent years, the roles of proteins, polysaccharides, and phages in the virulence of biofilms have been well studied. However, a mechanistic understanding of the release of such biomolecules and their interactions with antimicrobials requires a thorough review. Therefore, this article critically reviews the various mechanisms of release of matrix polymers. In addition, this article also provides a contemporary understanding of interactions between various biomolecules to protect biofilms against antimicrobials. In summary, this article will provide a thorough understanding of the functions of various biofilm matrix molecules.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofilm matrix: a multifaceted layer of biomolecules and a defensive barrier against antimicrobials\",\"authors\":\"Harini Ragupathi,&nbsp;Mahamahima Muthuswamy Pushparaj,&nbsp;Sarves Mani Gopi,&nbsp;Deenadayalan Karaiyagowder Govindarajan,&nbsp;Kumaravel Kandaswamy\",\"doi\":\"10.1007/s00203-024-04157-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bacterial cells often exist in the form of sessile aggregates known as biofilms, which are polymicrobial in nature and can produce slimy Extracellular Polymeric Substances (EPS). EPS is often referred to as a biofilm matrix and is a heterogeneous mixture of various biomolecules such as polysaccharides, proteins, and extracellular DNA/RNA (eDNA/RNA). In addition, bacteriophage (phage) was also found to be an integral component of the matrix and can serve as a protective barrier. In recent years, the roles of proteins, polysaccharides, and phages in the virulence of biofilms have been well studied. However, a mechanistic understanding of the release of such biomolecules and their interactions with antimicrobials requires a thorough review. Therefore, this article critically reviews the various mechanisms of release of matrix polymers. In addition, this article also provides a contemporary understanding of interactions between various biomolecules to protect biofilms against antimicrobials. In summary, this article will provide a thorough understanding of the functions of various biofilm matrix molecules.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":8279,\"journal\":{\"name\":\"Archives of Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-024-04157-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04157-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细菌细胞通常以无柄聚集体的形式存在,这种聚集体被称为生物膜,具有多微生物的性质,并能产生粘稠的胞外聚合物质(EPS)。EPS 通常被称为生物膜基质,是多糖、蛋白质和细胞外 DNA/RNA(eDNA/RNA)等各种生物大分子的异质混合物。此外,人们还发现噬菌体(phage)也是基质中不可或缺的组成部分,可以起到保护屏障的作用。近年来,人们对蛋白质、多糖和噬菌体在生物膜毒力中的作用进行了深入研究。然而,要从机理上理解这些生物大分子的释放及其与抗菌剂的相互作用,还需要进行深入研究。因此,本文对基质聚合物的各种释放机制进行了批判性评述。此外,本文还提供了当代对各种生物分子之间相互作用的理解,以保护生物膜免受抗菌剂的侵害。总之,本文将使人们对各种生物膜基质分子的功能有一个透彻的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biofilm matrix: a multifaceted layer of biomolecules and a defensive barrier against antimicrobials

Bacterial cells often exist in the form of sessile aggregates known as biofilms, which are polymicrobial in nature and can produce slimy Extracellular Polymeric Substances (EPS). EPS is often referred to as a biofilm matrix and is a heterogeneous mixture of various biomolecules such as polysaccharides, proteins, and extracellular DNA/RNA (eDNA/RNA). In addition, bacteriophage (phage) was also found to be an integral component of the matrix and can serve as a protective barrier. In recent years, the roles of proteins, polysaccharides, and phages in the virulence of biofilms have been well studied. However, a mechanistic understanding of the release of such biomolecules and their interactions with antimicrobials requires a thorough review. Therefore, this article critically reviews the various mechanisms of release of matrix polymers. In addition, this article also provides a contemporary understanding of interactions between various biomolecules to protect biofilms against antimicrobials. In summary, this article will provide a thorough understanding of the functions of various biofilm matrix molecules.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信