卵黄壳 MoS2 纳米反应器对严重失血性休克的光动力疗法†。

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2024-10-15 DOI:10.1039/D4RA04157G
Yijun Zhang, Tianfeng Hua, Xiaoyi Huang, Rongrong Gu, Ruixi Chu, Yan Hu, Sheng Ye and Min Yang
{"title":"卵黄壳 MoS2 纳米反应器对严重失血性休克的光动力疗法†。","authors":"Yijun Zhang, Tianfeng Hua, Xiaoyi Huang, Rongrong Gu, Ruixi Chu, Yan Hu, Sheng Ye and Min Yang","doi":"10.1039/D4RA04157G","DOIUrl":null,"url":null,"abstract":"<p >Ischemia-reperfusion injury resulting from severe hemorrhagic shock continues to cause substantial damage to human health and impose a significant economic burden. In this study, we designed an Au-loaded yolk–shell MoS<small><sub>2</sub></small> nanoreactor (Au@MoS<small><sub>2</sub></small>) that regulates cellular homeostasis. <em>In vitro</em> experiments validated the efficacy of the nanomaterial in reducing intracellular reactive oxygen species (ROS) production during hypoxia and reoxygenation, and had great cell biocompatibility, Au@MoS<small><sub>2</sub></small>. The antioxidant properties of the nanoreactors contributed to the elimination of ROS (over twofold scavenging ratio for ROS). <em>In vivo</em> results demonstrate that Au@MoS<small><sub>2</sub></small> (54.88% of reduction) alleviates hyperlactatemia and reduces ischemia-reperfusion injury in rats subjected to severe hemorrhagic shock, compared to MoS<small><sub>2</sub></small> (26.32% of reduction) alone. In addition, no discernible toxic side effects were observed in the rats throughout the experiment, underscoring the considerable promise of the nanoreactor for clinical trials. The mechanism involves catalyzing the degradation of endogenous lactic acid on the Au@MoS<small><sub>2</sub></small> nanoreactor under 808 nm light, thereby alleviating ischemia-reperfusion injury. This work proposes a new selective strategy for the treatment of synergistic hemorrhagic shock.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra04157g?page=search","citationCount":"0","resultStr":"{\"title\":\"Photodynamic therapy of severe hemorrhagic shock on yolk–shell MoS2 nanoreactors†\",\"authors\":\"Yijun Zhang, Tianfeng Hua, Xiaoyi Huang, Rongrong Gu, Ruixi Chu, Yan Hu, Sheng Ye and Min Yang\",\"doi\":\"10.1039/D4RA04157G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ischemia-reperfusion injury resulting from severe hemorrhagic shock continues to cause substantial damage to human health and impose a significant economic burden. In this study, we designed an Au-loaded yolk–shell MoS<small><sub>2</sub></small> nanoreactor (Au@MoS<small><sub>2</sub></small>) that regulates cellular homeostasis. <em>In vitro</em> experiments validated the efficacy of the nanomaterial in reducing intracellular reactive oxygen species (ROS) production during hypoxia and reoxygenation, and had great cell biocompatibility, Au@MoS<small><sub>2</sub></small>. The antioxidant properties of the nanoreactors contributed to the elimination of ROS (over twofold scavenging ratio for ROS). <em>In vivo</em> results demonstrate that Au@MoS<small><sub>2</sub></small> (54.88% of reduction) alleviates hyperlactatemia and reduces ischemia-reperfusion injury in rats subjected to severe hemorrhagic shock, compared to MoS<small><sub>2</sub></small> (26.32% of reduction) alone. In addition, no discernible toxic side effects were observed in the rats throughout the experiment, underscoring the considerable promise of the nanoreactor for clinical trials. The mechanism involves catalyzing the degradation of endogenous lactic acid on the Au@MoS<small><sub>2</sub></small> nanoreactor under 808 nm light, thereby alleviating ischemia-reperfusion injury. This work proposes a new selective strategy for the treatment of synergistic hemorrhagic shock.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra04157g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra04157g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra04157g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

严重失血性休克导致的缺血再灌注损伤继续对人类健康造成重大损害,并带来巨大的经济负担。在这项研究中,我们设计了一种能调节细胞稳态的金负载卵黄壳 MoS2 纳米反应器(Au@MoS2)。体外实验验证了这种纳米材料在缺氧和复氧过程中减少细胞内活性氧(ROS)产生的功效,而且 Au@MoS2 具有很好的细胞生物相容性。纳米反应器的抗氧化特性有助于消除 ROS(ROS 清除率超过 2 倍)。体内实验结果表明,与单独使用 MoS2(减少了 26.32%)相比,Au@MoS2(减少了 54.88%)可缓解高乳酸血症,并减轻大鼠严重失血性休克时的缺血再灌注损伤。此外,在整个实验过程中,大鼠没有观察到明显的毒副作用,这凸显了该纳米反应器在临床试验中的巨大前景。其机理是在 808 纳米波长的光照下催化 Au@MoS2 纳米反应器降解内源性乳酸,从而减轻缺血再灌注损伤。这项工作为治疗协同性失血性休克提出了一种新的选择性策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photodynamic therapy of severe hemorrhagic shock on yolk–shell MoS2 nanoreactors†

Ischemia-reperfusion injury resulting from severe hemorrhagic shock continues to cause substantial damage to human health and impose a significant economic burden. In this study, we designed an Au-loaded yolk–shell MoS2 nanoreactor (Au@MoS2) that regulates cellular homeostasis. In vitro experiments validated the efficacy of the nanomaterial in reducing intracellular reactive oxygen species (ROS) production during hypoxia and reoxygenation, and had great cell biocompatibility, Au@MoS2. The antioxidant properties of the nanoreactors contributed to the elimination of ROS (over twofold scavenging ratio for ROS). In vivo results demonstrate that Au@MoS2 (54.88% of reduction) alleviates hyperlactatemia and reduces ischemia-reperfusion injury in rats subjected to severe hemorrhagic shock, compared to MoS2 (26.32% of reduction) alone. In addition, no discernible toxic side effects were observed in the rats throughout the experiment, underscoring the considerable promise of the nanoreactor for clinical trials. The mechanism involves catalyzing the degradation of endogenous lactic acid on the Au@MoS2 nanoreactor under 808 nm light, thereby alleviating ischemia-reperfusion injury. This work proposes a new selective strategy for the treatment of synergistic hemorrhagic shock.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信