{"title":"用于 RGB-D 镜面分割的语义渐进引导网络","authors":"Chao Li;Wujie Zhou;Xi Zhou;Weiqing Yan","doi":"10.1109/LSP.2024.3475357","DOIUrl":null,"url":null,"abstract":"Existing salient target detection methods tend to use a single-mirror segmentation strategy, which ignores feature hierarchy information in the frequency domain and lacks fine-grained correspondence. To address these challenges, we propose a new semantic progressive guidance network (SPGNet). To mine sufficient effective information, we propose the wavelet bidirectional focusing (WBF) module to aggregate sub-band features through a bidirectional wavelet transform and fuse them with low-level features to deepen the detail mining. We also introduce the Gaussian fusion complementary (GFC) module, which adopts Gaussian filtering technology to optimize the feature space and then efficiently extracts the contour information through enhanced feature processing. In addition, we propose a global correlation bootstrapping (GCB) module that constructs region-to-pixel correlations from a global perspective to achieve fine-grained correspondence. The proposed model achieves competitive results on a benchmark dataset.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Progressive Guidance Network for RGB-D Mirror Segmentation\",\"authors\":\"Chao Li;Wujie Zhou;Xi Zhou;Weiqing Yan\",\"doi\":\"10.1109/LSP.2024.3475357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing salient target detection methods tend to use a single-mirror segmentation strategy, which ignores feature hierarchy information in the frequency domain and lacks fine-grained correspondence. To address these challenges, we propose a new semantic progressive guidance network (SPGNet). To mine sufficient effective information, we propose the wavelet bidirectional focusing (WBF) module to aggregate sub-band features through a bidirectional wavelet transform and fuse them with low-level features to deepen the detail mining. We also introduce the Gaussian fusion complementary (GFC) module, which adopts Gaussian filtering technology to optimize the feature space and then efficiently extracts the contour information through enhanced feature processing. In addition, we propose a global correlation bootstrapping (GCB) module that constructs region-to-pixel correlations from a global perspective to achieve fine-grained correspondence. The proposed model achieves competitive results on a benchmark dataset.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706626/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10706626/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Semantic Progressive Guidance Network for RGB-D Mirror Segmentation
Existing salient target detection methods tend to use a single-mirror segmentation strategy, which ignores feature hierarchy information in the frequency domain and lacks fine-grained correspondence. To address these challenges, we propose a new semantic progressive guidance network (SPGNet). To mine sufficient effective information, we propose the wavelet bidirectional focusing (WBF) module to aggregate sub-band features through a bidirectional wavelet transform and fuse them with low-level features to deepen the detail mining. We also introduce the Gaussian fusion complementary (GFC) module, which adopts Gaussian filtering technology to optimize the feature space and then efficiently extracts the contour information through enhanced feature processing. In addition, we propose a global correlation bootstrapping (GCB) module that constructs region-to-pixel correlations from a global perspective to achieve fine-grained correspondence. The proposed model achieves competitive results on a benchmark dataset.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.