含氮多壁碳纳米管的简易合成作为氢气进化反应和半咔嗪氧化的无价金属电催化剂

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
{"title":"含氮多壁碳纳米管的简易合成作为氢气进化反应和半咔嗪氧化的无价金属电催化剂","authors":"","doi":"10.1016/j.ijhydene.2024.10.130","DOIUrl":null,"url":null,"abstract":"<div><div>Studies of metal-free carbon nanostructures prove effective in energy and environmental applications due to their molecular tunability and vast chemical space. Herein, we synthesize nitrogen-containing multi-walled carbon nanotubes (N-MWCNTs) via. acid-catalysed incorporation of 3, 4-diaminopyridine into multi-walled carbon nanotubes (MWCNTs), and demonstrating their efficacy in electrocatalytic hydrogen evolution reaction (HER) and semicarbazide (SCB) oxidation for energy and environmental waste management, respectively. Successful synthesis is further confirmed by analysis techniques, i.e. Fourier transform infrared (FTIR) spectral analysis shows the diminishing OH frequency around 3250 cm<sup>−1</sup> in MWCNTs after functionalization and the formation of an O<img>C–NH bond in N-MWCNTs at 1710 cm<sup>−1</sup>. X-ray diffraction (XRD) confirms the incorporation of N-species, while Raman spectroscopic analysis indicates an increase in the I<sub>D</sub>/I<sub>G</sub> ratio MWCNTs (∼1) to N-MWCNTs (∼1.25), suggesting more defective sites in the N-MWCNTs nanocomposite. X-ray photoelectron spectroscopy (XPS) reveals peaks at 399.38, 400.49, and 402.05 eV, attributed to pyridinic-N, aromatic amide-N, and protonated amine groups, respectively. N₂ adsorption-desorption studies shows a high Brunauer-Emmett-Teller (BET) surface area for N-MWCNTs (119.22 m<sup>2</sup>/g) compared to MWCNTs (74.94 m<sup>2</sup>/g). Linear sweep voltammetry (LSV) profiles demonstrate enhanced activity of N-MWCNTs for both HER and SCB oxidation at an ultralow potential of E = −0.55 V vs RHE at 10 mA/cm<sup>2</sup>, with a lower Tafel slope of 108 mV.dec<sup>−1</sup>. Moreover, the electrochemical sensing studies indicates on N-MWCNTs were demonstrating an efficient electron transfer to SCB with the lower detection limit of 0.004 μmol. This work provides carbon-based metal-free electrocatalysts for energy harvesting and environmental management.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of nitrogen-containing multiwalled carbon nanotubes as a worth metal-free electrocatalyst for hydrogen evolution reaction and semicarbazide oxidation\",\"authors\":\"\",\"doi\":\"10.1016/j.ijhydene.2024.10.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Studies of metal-free carbon nanostructures prove effective in energy and environmental applications due to their molecular tunability and vast chemical space. Herein, we synthesize nitrogen-containing multi-walled carbon nanotubes (N-MWCNTs) via. acid-catalysed incorporation of 3, 4-diaminopyridine into multi-walled carbon nanotubes (MWCNTs), and demonstrating their efficacy in electrocatalytic hydrogen evolution reaction (HER) and semicarbazide (SCB) oxidation for energy and environmental waste management, respectively. Successful synthesis is further confirmed by analysis techniques, i.e. Fourier transform infrared (FTIR) spectral analysis shows the diminishing OH frequency around 3250 cm<sup>−1</sup> in MWCNTs after functionalization and the formation of an O<img>C–NH bond in N-MWCNTs at 1710 cm<sup>−1</sup>. X-ray diffraction (XRD) confirms the incorporation of N-species, while Raman spectroscopic analysis indicates an increase in the I<sub>D</sub>/I<sub>G</sub> ratio MWCNTs (∼1) to N-MWCNTs (∼1.25), suggesting more defective sites in the N-MWCNTs nanocomposite. X-ray photoelectron spectroscopy (XPS) reveals peaks at 399.38, 400.49, and 402.05 eV, attributed to pyridinic-N, aromatic amide-N, and protonated amine groups, respectively. N₂ adsorption-desorption studies shows a high Brunauer-Emmett-Teller (BET) surface area for N-MWCNTs (119.22 m<sup>2</sup>/g) compared to MWCNTs (74.94 m<sup>2</sup>/g). Linear sweep voltammetry (LSV) profiles demonstrate enhanced activity of N-MWCNTs for both HER and SCB oxidation at an ultralow potential of E = −0.55 V vs RHE at 10 mA/cm<sup>2</sup>, with a lower Tafel slope of 108 mV.dec<sup>−1</sup>. Moreover, the electrochemical sensing studies indicates on N-MWCNTs were demonstrating an efficient electron transfer to SCB with the lower detection limit of 0.004 μmol. This work provides carbon-based metal-free electrocatalysts for energy harvesting and environmental management.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319924043283\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924043283","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于无金属碳纳米结构具有分子可调性和广阔的化学空间,对其进行的研究被证明在能源和环境应用中非常有效。在此,我们通过酸催化将 3,4-二氨基吡啶掺入多壁碳纳米管(MWCNTs),合成了含氮多壁碳纳米管(N-MWCNTs),并证明了它们在电催化氢进化反应(HER)和半碳氮氧化物(SCB)中的功效,分别用于能源和环境废物管理。傅立叶变换红外光谱(FTIR)分析表明,功能化后的 MWCNTs 在 3250 cm-1 附近的 OH 频率降低,N-MWCNTs 在 1710 cm-1 处形成了 OC-NH 键,这进一步证实了合成的成功。X 射线衍射(XRD)证实了 N-物种的加入,而拉曼光谱分析表明,MWCNTs(∼1)与 N-MWCNTs (∼1.25)的 ID/IG 比值增加,表明 N-MWCNTs 纳米复合材料中存在更多缺陷位点。X 射线光电子能谱(XPS)在 399.38、400.49 和 402.05 eV 处分别显示出吡啶-N、芳香酰胺-N 和质子胺基团的峰值。对 N₂的吸附-解吸研究表明,N-MWCNTs(119.22 m2/g)与 MWCNTs(74.94 m2/g)相比具有较高的布鲁纳-埃美特-泰勒(BET)表面积。线性扫描伏安法(LSV)曲线显示,在 10 mA/cm2 的超低电位 E = -0.55 V vs RHE 条件下,N-MWCNTs 的 HER 和 SCB 氧化活性均有所增强,塔菲尔斜率较低,为 108 mV.dec-1。此外,N-MWCNTs 的电化学传感研究表明,它能有效地将电子转移到 SCB 上,检测下限为 0.004 μmol。这项工作为能量收集和环境管理提供了碳基无金属电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facile synthesis of nitrogen-containing multiwalled carbon nanotubes as a worth metal-free electrocatalyst for hydrogen evolution reaction and semicarbazide oxidation
Studies of metal-free carbon nanostructures prove effective in energy and environmental applications due to their molecular tunability and vast chemical space. Herein, we synthesize nitrogen-containing multi-walled carbon nanotubes (N-MWCNTs) via. acid-catalysed incorporation of 3, 4-diaminopyridine into multi-walled carbon nanotubes (MWCNTs), and demonstrating their efficacy in electrocatalytic hydrogen evolution reaction (HER) and semicarbazide (SCB) oxidation for energy and environmental waste management, respectively. Successful synthesis is further confirmed by analysis techniques, i.e. Fourier transform infrared (FTIR) spectral analysis shows the diminishing OH frequency around 3250 cm−1 in MWCNTs after functionalization and the formation of an OC–NH bond in N-MWCNTs at 1710 cm−1. X-ray diffraction (XRD) confirms the incorporation of N-species, while Raman spectroscopic analysis indicates an increase in the ID/IG ratio MWCNTs (∼1) to N-MWCNTs (∼1.25), suggesting more defective sites in the N-MWCNTs nanocomposite. X-ray photoelectron spectroscopy (XPS) reveals peaks at 399.38, 400.49, and 402.05 eV, attributed to pyridinic-N, aromatic amide-N, and protonated amine groups, respectively. N₂ adsorption-desorption studies shows a high Brunauer-Emmett-Teller (BET) surface area for N-MWCNTs (119.22 m2/g) compared to MWCNTs (74.94 m2/g). Linear sweep voltammetry (LSV) profiles demonstrate enhanced activity of N-MWCNTs for both HER and SCB oxidation at an ultralow potential of E = −0.55 V vs RHE at 10 mA/cm2, with a lower Tafel slope of 108 mV.dec−1. Moreover, the electrochemical sensing studies indicates on N-MWCNTs were demonstrating an efficient electron transfer to SCB with the lower detection limit of 0.004 μmol. This work provides carbon-based metal-free electrocatalysts for energy harvesting and environmental management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信