{"title":"不同 O2/N2 比率和加热速率下辣椒秸秆废物热解和燃烧特性的研究","authors":"Pengyu Wei , Guoyan Chen , Fubiao Zhi , Anchao Zhang , Haoxin Deng , Xiaoping Wen , Fahui Wang , Chenglong Yu","doi":"10.1016/j.tca.2024.179875","DOIUrl":null,"url":null,"abstract":"<div><div>To utilize chili straw waste (CSW) for energy production and generate higher-quality fuel, the pyrolysis characteristics of CSW under varying particle sizes and heating rates, as well as the effects of different O<sub>2</sub>/N<sub>2</sub> ratios on its combustion characteristics, were investigated using Thermogravimetry-Mass Spectrometry (TG-MS). The gas production performance under three different conditions was also analyzed. Results indicated that the solid yield decreased as particle size increased, with the maximum weight loss rate of 77.79 % occurring at a particle size of 1.25∼1.60 mm. The highest relative pyrolysis rate was 0.77 %/K at a heating rate of 10 K/min, corresponding to a weight loss rate of 74.46 %. Increasing the proportion of oxygen in the atmosphere reduced both the ignition and burnout temperatures of CSW by 9.34 K and 51.89 K, respectively, shifting the Derivative Thermogravimetry (DTG) curve to a lower temperature range. Furthermore, an increase in the heating rate enhanced hydrogen production intensity during CSW pyrolysis, with the peak particle current of H<sub>2</sub> rising from 8.7 × 10<sup>−10</sup> A to 1.2 × 10<sup>−9</sup> A, representing a 0.38-fold increase when the heating rate was raised from 5 K/min to 40 K/min. A kinetic analysis of CSW pyrolysis using the Coats-Redfern (CR) and Achar methods revealed that activation energy (E<sub>a</sub>) increases with particle size, indicating higher energy requirements due to heat transfer resistance. The Friedman, Kissinger-Akahira-Sunose (KAS), and Ozawa-Flynn-Wall (OFW) methods showed rising E<sub>a</sub> with increasing conversion rates, corresponding to the decomposition of hemicellulose, cellulose, and lignin. In combustion, oxygen concentration significantly influences E<sub>a</sub>, raising it for volatile matter and fixed carbon, and also increasing it for lignin at high temperatures. The CR and Achar models provided strong fits, confirming their reliability in describing CSW pyrolysis and combustion.</div></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"742 ","pages":"Article 179875"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of pyrolysis and combustion characteristics of chili straw waste with different O2/N2 ratios and heating rates\",\"authors\":\"Pengyu Wei , Guoyan Chen , Fubiao Zhi , Anchao Zhang , Haoxin Deng , Xiaoping Wen , Fahui Wang , Chenglong Yu\",\"doi\":\"10.1016/j.tca.2024.179875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To utilize chili straw waste (CSW) for energy production and generate higher-quality fuel, the pyrolysis characteristics of CSW under varying particle sizes and heating rates, as well as the effects of different O<sub>2</sub>/N<sub>2</sub> ratios on its combustion characteristics, were investigated using Thermogravimetry-Mass Spectrometry (TG-MS). The gas production performance under three different conditions was also analyzed. Results indicated that the solid yield decreased as particle size increased, with the maximum weight loss rate of 77.79 % occurring at a particle size of 1.25∼1.60 mm. The highest relative pyrolysis rate was 0.77 %/K at a heating rate of 10 K/min, corresponding to a weight loss rate of 74.46 %. Increasing the proportion of oxygen in the atmosphere reduced both the ignition and burnout temperatures of CSW by 9.34 K and 51.89 K, respectively, shifting the Derivative Thermogravimetry (DTG) curve to a lower temperature range. Furthermore, an increase in the heating rate enhanced hydrogen production intensity during CSW pyrolysis, with the peak particle current of H<sub>2</sub> rising from 8.7 × 10<sup>−10</sup> A to 1.2 × 10<sup>−9</sup> A, representing a 0.38-fold increase when the heating rate was raised from 5 K/min to 40 K/min. A kinetic analysis of CSW pyrolysis using the Coats-Redfern (CR) and Achar methods revealed that activation energy (E<sub>a</sub>) increases with particle size, indicating higher energy requirements due to heat transfer resistance. The Friedman, Kissinger-Akahira-Sunose (KAS), and Ozawa-Flynn-Wall (OFW) methods showed rising E<sub>a</sub> with increasing conversion rates, corresponding to the decomposition of hemicellulose, cellulose, and lignin. In combustion, oxygen concentration significantly influences E<sub>a</sub>, raising it for volatile matter and fixed carbon, and also increasing it for lignin at high temperatures. The CR and Achar models provided strong fits, confirming their reliability in describing CSW pyrolysis and combustion.</div></div>\",\"PeriodicalId\":23058,\"journal\":{\"name\":\"Thermochimica Acta\",\"volume\":\"742 \",\"pages\":\"Article 179875\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermochimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040603124002144\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124002144","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Investigation of pyrolysis and combustion characteristics of chili straw waste with different O2/N2 ratios and heating rates
To utilize chili straw waste (CSW) for energy production and generate higher-quality fuel, the pyrolysis characteristics of CSW under varying particle sizes and heating rates, as well as the effects of different O2/N2 ratios on its combustion characteristics, were investigated using Thermogravimetry-Mass Spectrometry (TG-MS). The gas production performance under three different conditions was also analyzed. Results indicated that the solid yield decreased as particle size increased, with the maximum weight loss rate of 77.79 % occurring at a particle size of 1.25∼1.60 mm. The highest relative pyrolysis rate was 0.77 %/K at a heating rate of 10 K/min, corresponding to a weight loss rate of 74.46 %. Increasing the proportion of oxygen in the atmosphere reduced both the ignition and burnout temperatures of CSW by 9.34 K and 51.89 K, respectively, shifting the Derivative Thermogravimetry (DTG) curve to a lower temperature range. Furthermore, an increase in the heating rate enhanced hydrogen production intensity during CSW pyrolysis, with the peak particle current of H2 rising from 8.7 × 10−10 A to 1.2 × 10−9 A, representing a 0.38-fold increase when the heating rate was raised from 5 K/min to 40 K/min. A kinetic analysis of CSW pyrolysis using the Coats-Redfern (CR) and Achar methods revealed that activation energy (Ea) increases with particle size, indicating higher energy requirements due to heat transfer resistance. The Friedman, Kissinger-Akahira-Sunose (KAS), and Ozawa-Flynn-Wall (OFW) methods showed rising Ea with increasing conversion rates, corresponding to the decomposition of hemicellulose, cellulose, and lignin. In combustion, oxygen concentration significantly influences Ea, raising it for volatile matter and fixed carbon, and also increasing it for lignin at high temperatures. The CR and Achar models provided strong fits, confirming their reliability in describing CSW pyrolysis and combustion.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes