带层间加工的线弧定向能沉积的微观结构演变和机械性能提升

IF 1.9 Q3 ENGINEERING, MANUFACTURING
Asif Rashid, Akshar Kota, Shreyes N. Melkote
{"title":"带层间加工的线弧定向能沉积的微观结构演变和机械性能提升","authors":"Asif Rashid,&nbsp;Akshar Kota,&nbsp;Shreyes N. Melkote","doi":"10.1016/j.mfglet.2024.09.094","DOIUrl":null,"url":null,"abstract":"<div><div>Wire-Arc Directed Energy Deposition (Wire-Arc DED) has emerged as a promising additive manufacturing technique known for its high deposition rates. However, the variability in microstructure and mechanical properties (e.g., hardness) of the manufactured components poses significant challenges. This study delves into these issues, focusing on the influence of interlayer machining on the microstructural evolution and mechanical properties of thin-wall Wire-Arc DED structures. It is shown that as-built Wire-Arc DED structures exhibit a pronounced microstructure variation between different regions along the build direction, primarily governed by the differences in thermal history. In contrast, a Hybrid Wire-Arc DED process that integrates interlayer machining into the build process to induce severe plastic deformation leads to a microstructure characterized by refinement and homogenization, compared to a Wire-Arc DED process. This study provides insights into the impacts of plastic deformation due to machining and thermal cycling due to subsequent layer depositions on the microstructure and hardness obtained in Wire-Arc DED and Hybrid Wire-Arc DED processes, highlighting the potential of hybrid manufacturing to generate tailored microstructures to enhance the mechanical performance of functional components.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 758-765"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of microstructure and mechanical property enhancement in wire-arc directed energy deposition with interlayer machining\",\"authors\":\"Asif Rashid,&nbsp;Akshar Kota,&nbsp;Shreyes N. Melkote\",\"doi\":\"10.1016/j.mfglet.2024.09.094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wire-Arc Directed Energy Deposition (Wire-Arc DED) has emerged as a promising additive manufacturing technique known for its high deposition rates. However, the variability in microstructure and mechanical properties (e.g., hardness) of the manufactured components poses significant challenges. This study delves into these issues, focusing on the influence of interlayer machining on the microstructural evolution and mechanical properties of thin-wall Wire-Arc DED structures. It is shown that as-built Wire-Arc DED structures exhibit a pronounced microstructure variation between different regions along the build direction, primarily governed by the differences in thermal history. In contrast, a Hybrid Wire-Arc DED process that integrates interlayer machining into the build process to induce severe plastic deformation leads to a microstructure characterized by refinement and homogenization, compared to a Wire-Arc DED process. This study provides insights into the impacts of plastic deformation due to machining and thermal cycling due to subsequent layer depositions on the microstructure and hardness obtained in Wire-Arc DED and Hybrid Wire-Arc DED processes, highlighting the potential of hybrid manufacturing to generate tailored microstructures to enhance the mechanical performance of functional components.</div></div>\",\"PeriodicalId\":38186,\"journal\":{\"name\":\"Manufacturing Letters\",\"volume\":\"41 \",\"pages\":\"Pages 758-765\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213846324001573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846324001573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

线弧定向能量沉积(Wire-Arc DED)以其高沉积率而闻名,已成为一种前景广阔的增材制造技术。然而,制造部件的微观结构和机械性能(如硬度)的可变性带来了巨大挑战。本研究深入探讨了这些问题,重点研究了层间加工对薄壁线弧 DED 结构的微观结构演变和机械性能的影响。研究结果表明,坯料线-弧 DED 结构在沿坯料方向的不同区域之间表现出明显的微观结构差异,这主要受热历史差异的影响。相反,与线弧 DED 工艺相比,混合线弧 DED 工艺将层间加工集成到构建过程中,以诱导严重的塑性变形,从而导致微观结构以细化和均匀化为特征。本研究深入探讨了机加工引起的塑性变形和后续层沉积引起的热循环对线弧 DED 和混合线弧 DED 工艺获得的微观结构和硬度的影响,凸显了混合制造生成定制微观结构以提高功能部件机械性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of microstructure and mechanical property enhancement in wire-arc directed energy deposition with interlayer machining
Wire-Arc Directed Energy Deposition (Wire-Arc DED) has emerged as a promising additive manufacturing technique known for its high deposition rates. However, the variability in microstructure and mechanical properties (e.g., hardness) of the manufactured components poses significant challenges. This study delves into these issues, focusing on the influence of interlayer machining on the microstructural evolution and mechanical properties of thin-wall Wire-Arc DED structures. It is shown that as-built Wire-Arc DED structures exhibit a pronounced microstructure variation between different regions along the build direction, primarily governed by the differences in thermal history. In contrast, a Hybrid Wire-Arc DED process that integrates interlayer machining into the build process to induce severe plastic deformation leads to a microstructure characterized by refinement and homogenization, compared to a Wire-Arc DED process. This study provides insights into the impacts of plastic deformation due to machining and thermal cycling due to subsequent layer depositions on the microstructure and hardness obtained in Wire-Arc DED and Hybrid Wire-Arc DED processes, highlighting the potential of hybrid manufacturing to generate tailored microstructures to enhance the mechanical performance of functional components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信