{"title":"制备用于高性能锂离子电池阳极的芯壳硅/碳/石墨烯复合材料","authors":"Xiaoming Zhou, Yang Liu","doi":"10.1016/j.synthmet.2024.117768","DOIUrl":null,"url":null,"abstract":"<div><div>One of the important objectives for the development of enhanced lithium-ion batteries is developing high-performance silicon-based anodes with durable operational capability. Herein, a three-dimensional graphene-decorated core-shell Si/C composite is fabricated by the in-situ polymerization of organic pyrrole molecule and pyrolysis process, in which the melamine formaldehyde resin is subtly used as three-dimensional porous framework to offer abundant loading area for the uniform dispersion of active silicon nanoparticles. Meanwhile, the core-shell structure deriving from polypyrrole in the composite can effectively buffer the volume change of silicon ingredient and avoid the direct contact with the electrolyte during the cycling process, leading to the improved structural stability and electrochemical performance. The outermost layer of graphene nanosheets is designed to enhance the electrical conductivity of the electrode. As a result, the synthesized Si/C/graphene composite exhibits a high capacity and excellent cycling performance. This work reveals that combining a three-dimensional carbon substrate with a core-shell structure might be a promising solution for anode materials with obvious volume transformation.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117768"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of core-shell Si/C/graphene composite for high-performance lithium-ion battery anodes\",\"authors\":\"Xiaoming Zhou, Yang Liu\",\"doi\":\"10.1016/j.synthmet.2024.117768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the important objectives for the development of enhanced lithium-ion batteries is developing high-performance silicon-based anodes with durable operational capability. Herein, a three-dimensional graphene-decorated core-shell Si/C composite is fabricated by the in-situ polymerization of organic pyrrole molecule and pyrolysis process, in which the melamine formaldehyde resin is subtly used as three-dimensional porous framework to offer abundant loading area for the uniform dispersion of active silicon nanoparticles. Meanwhile, the core-shell structure deriving from polypyrrole in the composite can effectively buffer the volume change of silicon ingredient and avoid the direct contact with the electrolyte during the cycling process, leading to the improved structural stability and electrochemical performance. The outermost layer of graphene nanosheets is designed to enhance the electrical conductivity of the electrode. As a result, the synthesized Si/C/graphene composite exhibits a high capacity and excellent cycling performance. This work reveals that combining a three-dimensional carbon substrate with a core-shell structure might be a promising solution for anode materials with obvious volume transformation.</div></div>\",\"PeriodicalId\":22245,\"journal\":{\"name\":\"Synthetic Metals\",\"volume\":\"309 \",\"pages\":\"Article 117768\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379677924002303\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677924002303","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation of core-shell Si/C/graphene composite for high-performance lithium-ion battery anodes
One of the important objectives for the development of enhanced lithium-ion batteries is developing high-performance silicon-based anodes with durable operational capability. Herein, a three-dimensional graphene-decorated core-shell Si/C composite is fabricated by the in-situ polymerization of organic pyrrole molecule and pyrolysis process, in which the melamine formaldehyde resin is subtly used as three-dimensional porous framework to offer abundant loading area for the uniform dispersion of active silicon nanoparticles. Meanwhile, the core-shell structure deriving from polypyrrole in the composite can effectively buffer the volume change of silicon ingredient and avoid the direct contact with the electrolyte during the cycling process, leading to the improved structural stability and electrochemical performance. The outermost layer of graphene nanosheets is designed to enhance the electrical conductivity of the electrode. As a result, the synthesized Si/C/graphene composite exhibits a high capacity and excellent cycling performance. This work reveals that combining a three-dimensional carbon substrate with a core-shell structure might be a promising solution for anode materials with obvious volume transformation.
期刊介绍:
This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.