Ningguo Dong , Congcong Luan , Xinhua Yao , Zequan Ding , Yuyang Ji , Chengcheng Niu , Yaping Zheng , Yuetong Xu , Jianzhong Fu
{"title":"工艺参数对激光辅助自动纤维铺放原位固结 CF/PEEK 复合材料层间剪切强度的影响","authors":"Ningguo Dong , Congcong Luan , Xinhua Yao , Zequan Ding , Yuyang Ji , Chengcheng Niu , Yaping Zheng , Yuetong Xu , Jianzhong Fu","doi":"10.1016/j.compscitech.2024.110902","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of process parameters, including placement speed, laser power, tooling temperature, compaction force and tape tension, on the interlaminar shear strength of CF/PEEK components in-situ consolidated by laser-assisted automated fiber placement was systematically investigated. To examine both the individual and interactive effects of these parameters, two sets of orthogonal experiments were formulated and conducted, yielding a maximum ILSS of 70.3 MPa. Analysis of variance revealed that the interaction between laser power and placement speed had the most significant effect, followed by tooling temperature, compaction force and tape tension. Furthermore, the concept of <em>linear energy density of consolidated segments</em> (LEDCS) was introduced to characterize and quantify the relationship between laser power and placement speed. ILSS values exceeding 50 MPa were predicted within the LEDCS range of 1.58 J/mm to 3.75 J/mm. Finally, the failure modes of the samples were elucidated through scanning electron microscopy.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110902"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of process parameters on the interlaminar shear strength of CF/PEEK composites in-situ consolidated by laser-assisted automated fiber placement\",\"authors\":\"Ningguo Dong , Congcong Luan , Xinhua Yao , Zequan Ding , Yuyang Ji , Chengcheng Niu , Yaping Zheng , Yuetong Xu , Jianzhong Fu\",\"doi\":\"10.1016/j.compscitech.2024.110902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The influence of process parameters, including placement speed, laser power, tooling temperature, compaction force and tape tension, on the interlaminar shear strength of CF/PEEK components in-situ consolidated by laser-assisted automated fiber placement was systematically investigated. To examine both the individual and interactive effects of these parameters, two sets of orthogonal experiments were formulated and conducted, yielding a maximum ILSS of 70.3 MPa. Analysis of variance revealed that the interaction between laser power and placement speed had the most significant effect, followed by tooling temperature, compaction force and tape tension. Furthermore, the concept of <em>linear energy density of consolidated segments</em> (LEDCS) was introduced to characterize and quantify the relationship between laser power and placement speed. ILSS values exceeding 50 MPa were predicted within the LEDCS range of 1.58 J/mm to 3.75 J/mm. Finally, the failure modes of the samples were elucidated through scanning electron microscopy.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"258 \",\"pages\":\"Article 110902\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026635382400472X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026635382400472X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Influence of process parameters on the interlaminar shear strength of CF/PEEK composites in-situ consolidated by laser-assisted automated fiber placement
The influence of process parameters, including placement speed, laser power, tooling temperature, compaction force and tape tension, on the interlaminar shear strength of CF/PEEK components in-situ consolidated by laser-assisted automated fiber placement was systematically investigated. To examine both the individual and interactive effects of these parameters, two sets of orthogonal experiments were formulated and conducted, yielding a maximum ILSS of 70.3 MPa. Analysis of variance revealed that the interaction between laser power and placement speed had the most significant effect, followed by tooling temperature, compaction force and tape tension. Furthermore, the concept of linear energy density of consolidated segments (LEDCS) was introduced to characterize and quantify the relationship between laser power and placement speed. ILSS values exceeding 50 MPa were predicted within the LEDCS range of 1.58 J/mm to 3.75 J/mm. Finally, the failure modes of the samples were elucidated through scanning electron microscopy.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.