Yan Zhou , Qiulan Zhang , Guoying Bai , Hongyan Zhao , Guanyin Shuai , Yali Cui , Jingli Shao
{"title":"基于灰色关系分析和 LSTM 模型的地下水动态聚类与预测:中国北京平原案例研究","authors":"Yan Zhou , Qiulan Zhang , Guoying Bai , Hongyan Zhao , Guanyin Shuai , Yali Cui , Jingli Shao","doi":"10.1016/j.ejrh.2024.102011","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>Beijing Plain, China</div></div><div><h3>Study focus</h3><div>The traditional zoning of groundwater systems relies on lithological characteristics and hydraulic connections. However, the influence of climate change and human activities has led to the emergence of diverse dynamic patterns within these systems. Additionally, the differences in groundwater dynamic characteristics are often ignored when modeling with machine learning methods. In this study, a new clustering method named GRA-CLU was proposed to classify dynamic types of groundwater. Then, regional models are built using LSTM based on the dynamic zoning, aiming to incorporate hydrogeological significance into the pure data-driven model.</div><div>New hydrological insights for the region: The GRA-CLU method classified the study area into six groundwater dynamic types. Compared with the traditional hydrogeological units, the new zoning result identified two dynamic types that have never been considered: urban influence zone and mountain-plain junction zone where surface water interacts with groundwater. Through analysis, the significant rise of groundwater levels in 2021 was more influenced by heavy rainfall events rather than human activities. This study further explored the performance of LSTM regional models based on the six dynamic zones. The results indicated that the NSE of models increased by 5.7–50.0 %, the improvement was more obvious in zones with irregular fluctuations. The RMSE decreased by 31.5–59.8 %, particularly noticeable in zones with regular annual fluctuations and large samples.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 102011"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Groundwater dynamics clustering and prediction based on grey relational analysis and LSTM model: A case study in Beijing Plain, China\",\"authors\":\"Yan Zhou , Qiulan Zhang , Guoying Bai , Hongyan Zhao , Guanyin Shuai , Yali Cui , Jingli Shao\",\"doi\":\"10.1016/j.ejrh.2024.102011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study region</h3><div>Beijing Plain, China</div></div><div><h3>Study focus</h3><div>The traditional zoning of groundwater systems relies on lithological characteristics and hydraulic connections. However, the influence of climate change and human activities has led to the emergence of diverse dynamic patterns within these systems. Additionally, the differences in groundwater dynamic characteristics are often ignored when modeling with machine learning methods. In this study, a new clustering method named GRA-CLU was proposed to classify dynamic types of groundwater. Then, regional models are built using LSTM based on the dynamic zoning, aiming to incorporate hydrogeological significance into the pure data-driven model.</div><div>New hydrological insights for the region: The GRA-CLU method classified the study area into six groundwater dynamic types. Compared with the traditional hydrogeological units, the new zoning result identified two dynamic types that have never been considered: urban influence zone and mountain-plain junction zone where surface water interacts with groundwater. Through analysis, the significant rise of groundwater levels in 2021 was more influenced by heavy rainfall events rather than human activities. This study further explored the performance of LSTM regional models based on the six dynamic zones. The results indicated that the NSE of models increased by 5.7–50.0 %, the improvement was more obvious in zones with irregular fluctuations. The RMSE decreased by 31.5–59.8 %, particularly noticeable in zones with regular annual fluctuations and large samples.</div></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":\"56 \",\"pages\":\"Article 102011\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581824003604\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824003604","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Groundwater dynamics clustering and prediction based on grey relational analysis and LSTM model: A case study in Beijing Plain, China
Study region
Beijing Plain, China
Study focus
The traditional zoning of groundwater systems relies on lithological characteristics and hydraulic connections. However, the influence of climate change and human activities has led to the emergence of diverse dynamic patterns within these systems. Additionally, the differences in groundwater dynamic characteristics are often ignored when modeling with machine learning methods. In this study, a new clustering method named GRA-CLU was proposed to classify dynamic types of groundwater. Then, regional models are built using LSTM based on the dynamic zoning, aiming to incorporate hydrogeological significance into the pure data-driven model.
New hydrological insights for the region: The GRA-CLU method classified the study area into six groundwater dynamic types. Compared with the traditional hydrogeological units, the new zoning result identified two dynamic types that have never been considered: urban influence zone and mountain-plain junction zone where surface water interacts with groundwater. Through analysis, the significant rise of groundwater levels in 2021 was more influenced by heavy rainfall events rather than human activities. This study further explored the performance of LSTM regional models based on the six dynamic zones. The results indicated that the NSE of models increased by 5.7–50.0 %, the improvement was more obvious in zones with irregular fluctuations. The RMSE decreased by 31.5–59.8 %, particularly noticeable in zones with regular annual fluctuations and large samples.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.