Tiantian Li , Xiaodong Zhang , Shengming Tang , Hongya Qu , Yuhua Yang , Li Li , Yongping Li
{"title":"台风条件下的中尺度到微尺度耦合模型,考虑了风电场的涡旋结构和科里奥利效应","authors":"Tiantian Li , Xiaodong Zhang , Shengming Tang , Hongya Qu , Yuhua Yang , Li Li , Yongping Li","doi":"10.1016/j.jweia.2024.105922","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate simulations of typhoon-induced wind speeds on wind farms are crucial for the refined assessment of typhoon risks in wind turbines. Southeastern coastal area in China is rich in wind resources but is also severely threatened by typhoons. As an extremely destructive weather system with complex structures, the refined near-surface wind fields of typhoons are difficult to simulate by meso-scale models for risk assessment. Therefore, a coupled meso- and micro-scale model under typhoon conditions is proposed to simulate typhoon-induced winds on a wind farm. The Coriolis force is considered in the coupled model to reflect the rotating effect of typhoons caused by the vortex structure. A coupling algorithm based on objective analysis is proposed to construct boundary conditions at the coupling interface, to consider the variation of inflow variables in the vertical and cross-wind directions. Model constants of the two-equation turbulence model are calibrated based on typhoon field observations, to more reasonably simulate typhoons. A validation study is conducted, and the results show that the maximum wind speed on the wind farm simulated by the coupled model exhibits an increased accuracy compared with that of the meso-scale model, where the absolute error decreases by 34%.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"254 ","pages":"Article 105922"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A meso- to micro-scale coupled model under typhoon conditions considering vortex structure and coriolis effect for wind farms\",\"authors\":\"Tiantian Li , Xiaodong Zhang , Shengming Tang , Hongya Qu , Yuhua Yang , Li Li , Yongping Li\",\"doi\":\"10.1016/j.jweia.2024.105922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate simulations of typhoon-induced wind speeds on wind farms are crucial for the refined assessment of typhoon risks in wind turbines. Southeastern coastal area in China is rich in wind resources but is also severely threatened by typhoons. As an extremely destructive weather system with complex structures, the refined near-surface wind fields of typhoons are difficult to simulate by meso-scale models for risk assessment. Therefore, a coupled meso- and micro-scale model under typhoon conditions is proposed to simulate typhoon-induced winds on a wind farm. The Coriolis force is considered in the coupled model to reflect the rotating effect of typhoons caused by the vortex structure. A coupling algorithm based on objective analysis is proposed to construct boundary conditions at the coupling interface, to consider the variation of inflow variables in the vertical and cross-wind directions. Model constants of the two-equation turbulence model are calibrated based on typhoon field observations, to more reasonably simulate typhoons. A validation study is conducted, and the results show that the maximum wind speed on the wind farm simulated by the coupled model exhibits an increased accuracy compared with that of the meso-scale model, where the absolute error decreases by 34%.</div></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"254 \",\"pages\":\"Article 105922\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016761052400285X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016761052400285X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A meso- to micro-scale coupled model under typhoon conditions considering vortex structure and coriolis effect for wind farms
Accurate simulations of typhoon-induced wind speeds on wind farms are crucial for the refined assessment of typhoon risks in wind turbines. Southeastern coastal area in China is rich in wind resources but is also severely threatened by typhoons. As an extremely destructive weather system with complex structures, the refined near-surface wind fields of typhoons are difficult to simulate by meso-scale models for risk assessment. Therefore, a coupled meso- and micro-scale model under typhoon conditions is proposed to simulate typhoon-induced winds on a wind farm. The Coriolis force is considered in the coupled model to reflect the rotating effect of typhoons caused by the vortex structure. A coupling algorithm based on objective analysis is proposed to construct boundary conditions at the coupling interface, to consider the variation of inflow variables in the vertical and cross-wind directions. Model constants of the two-equation turbulence model are calibrated based on typhoon field observations, to more reasonably simulate typhoons. A validation study is conducted, and the results show that the maximum wind speed on the wind farm simulated by the coupled model exhibits an increased accuracy compared with that of the meso-scale model, where the absolute error decreases by 34%.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.