利用增强型半离散建模框架对承受压缩载荷(OHC)的开孔层压板进行渐进破坏分析

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Vignesh Shankar Iyer, Minh Hoang Nguyen, Royan J. D’Mello, Anthony M. Waas
{"title":"利用增强型半离散建模框架对承受压缩载荷(OHC)的开孔层压板进行渐进破坏分析","authors":"Vignesh Shankar Iyer,&nbsp;Minh Hoang Nguyen,&nbsp;Royan J. D’Mello,&nbsp;Anthony M. Waas","doi":"10.1016/j.jmps.2024.105902","DOIUrl":null,"url":null,"abstract":"<div><div>The Open-hole compressive (OHC) strength of a fiber reinforced laminate is one of the most critical allowables for design of aerostructures. In this paper, results for predicting the OHC strength using the semi-discrete damage modeling framework are presented. The predictions are seen to capture experimentally observed failure mechanisms and measured failure loads. The constitutive model includes local axial compressive failure (and subsequent load bearing at a reduced plateau stress) while maintaining numerical robustness. Standard stacking sequences (quasi-isotropic, “hard” and “soft”) have been analyzed and compared to publicly available databases. Additionally, the model is challenged to predict delamination-dominated failure due to ply-scaling. Overall, the model is able to capture relevant failure mechanisms, while the ultimate loads are predicted with good accuracy. Therefore, this framework can be used with confidence in predicting OHC strengths of laminates.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105902"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive failure analysis of laminates with an open hole subjected to compressive loading (OHC) using the enhanced semi-discrete modeling framework\",\"authors\":\"Vignesh Shankar Iyer,&nbsp;Minh Hoang Nguyen,&nbsp;Royan J. D’Mello,&nbsp;Anthony M. Waas\",\"doi\":\"10.1016/j.jmps.2024.105902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Open-hole compressive (OHC) strength of a fiber reinforced laminate is one of the most critical allowables for design of aerostructures. In this paper, results for predicting the OHC strength using the semi-discrete damage modeling framework are presented. The predictions are seen to capture experimentally observed failure mechanisms and measured failure loads. The constitutive model includes local axial compressive failure (and subsequent load bearing at a reduced plateau stress) while maintaining numerical robustness. Standard stacking sequences (quasi-isotropic, “hard” and “soft”) have been analyzed and compared to publicly available databases. Additionally, the model is challenged to predict delamination-dominated failure due to ply-scaling. Overall, the model is able to capture relevant failure mechanisms, while the ultimate loads are predicted with good accuracy. Therefore, this framework can be used with confidence in predicting OHC strengths of laminates.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"193 \",\"pages\":\"Article 105902\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624003685\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003685","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纤维增强层压板的开孔抗压强度(OHC)是航空结构设计中最关键的允许值之一。本文介绍了使用半离散损伤建模框架预测开孔抗压强度的结果。预测结果反映了实验观察到的破坏机制和测量到的破坏载荷。构成模型包括局部轴向压缩破坏(以及随后在降低的高原应力下的承载),同时保持了数值稳健性。对标准堆积序列(准各向异性、"硬 "和 "软")进行了分析,并与公开数据库进行了比较。此外,该模型在预测由于层缩放造成的以分层为主的失效方面也面临挑战。总体而言,该模型能够捕捉到相关的失效机理,同时对极限载荷的预测也非常准确。因此,该框架可用于预测层压板的 OHC 强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progressive failure analysis of laminates with an open hole subjected to compressive loading (OHC) using the enhanced semi-discrete modeling framework
The Open-hole compressive (OHC) strength of a fiber reinforced laminate is one of the most critical allowables for design of aerostructures. In this paper, results for predicting the OHC strength using the semi-discrete damage modeling framework are presented. The predictions are seen to capture experimentally observed failure mechanisms and measured failure loads. The constitutive model includes local axial compressive failure (and subsequent load bearing at a reduced plateau stress) while maintaining numerical robustness. Standard stacking sequences (quasi-isotropic, “hard” and “soft”) have been analyzed and compared to publicly available databases. Additionally, the model is challenged to predict delamination-dominated failure due to ply-scaling. Overall, the model is able to capture relevant failure mechanisms, while the ultimate loads are predicted with good accuracy. Therefore, this framework can be used with confidence in predicting OHC strengths of laminates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信