{"title":"有裂缝的季莫申科梁的自然频率","authors":"","doi":"10.1016/j.wavemoti.2024.103420","DOIUrl":null,"url":null,"abstract":"<div><div>A problem of calculating of natural frequencies of a Timoshenko beam weakened by a finite number of transverse open cracks is considered. The problem is solved for both known crack models. In one model every crack is simulated by a single, massless rotational spring. In the other model every crack is simulated by two massless springs (one extensional and another one rotational). An effective method for calculation of the natural frequencies of a vibrating beam with cracks, which was previously successfully applied to Euler-Bernoulli beams, is extended to the case of Timoshenko beam. The developed method makes it possible to significantly reduce the order of the determinant, the zeros of which are natural frequencies. Numerical examples are considered. The results are compared with the known where it is possible.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural frequencies of a Timoshenko beam with cracks\",\"authors\":\"\",\"doi\":\"10.1016/j.wavemoti.2024.103420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A problem of calculating of natural frequencies of a Timoshenko beam weakened by a finite number of transverse open cracks is considered. The problem is solved for both known crack models. In one model every crack is simulated by a single, massless rotational spring. In the other model every crack is simulated by two massless springs (one extensional and another one rotational). An effective method for calculation of the natural frequencies of a vibrating beam with cracks, which was previously successfully applied to Euler-Bernoulli beams, is extended to the case of Timoshenko beam. The developed method makes it possible to significantly reduce the order of the determinant, the zeros of which are natural frequencies. Numerical examples are considered. The results are compared with the known where it is possible.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524001501\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001501","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Natural frequencies of a Timoshenko beam with cracks
A problem of calculating of natural frequencies of a Timoshenko beam weakened by a finite number of transverse open cracks is considered. The problem is solved for both known crack models. In one model every crack is simulated by a single, massless rotational spring. In the other model every crack is simulated by two massless springs (one extensional and another one rotational). An effective method for calculation of the natural frequencies of a vibrating beam with cracks, which was previously successfully applied to Euler-Bernoulli beams, is extended to the case of Timoshenko beam. The developed method makes it possible to significantly reduce the order of the determinant, the zeros of which are natural frequencies. Numerical examples are considered. The results are compared with the known where it is possible.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.