{"title":"非线性复杂金兹堡-朗道方程的 Crank-Nicolson 快速无元素 Galerkin 方法分析","authors":"Xiaolin Li , Xiyong Cui , Shougui Zhang","doi":"10.1016/j.cam.2024.116323","DOIUrl":null,"url":null,"abstract":"<div><div>A fast element-free Galerkin (EFG) method is proposed in this paper for solving the nonlinear complex Ginzburg–Landau equation. A second-order accurate time semi-discrete system is presented by using the Crank–Nicolson scheme for the temporal discretization, and then a meshless fully discrete system is established by using the EFG method for the spatial discretization. In the proposed EFG method, Nitsche’s technique is used to impose the essential boundary conditions in a weak sense, and the reproducing kernel gradient smoothing integration is used to accelerate the calculation. Theoretical errors for the time semi-discrete system and the fully discrete EFG system are analyzed in detail. Optimal error estimates of the fully discrete Crank–Nicolson EFG method are obtained in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norms. Numerical results validate the theoretical results and the effectiveness of the method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"457 ","pages":"Article 116323"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a Crank–Nicolson fast element-free Galerkin method for the nonlinear complex Ginzburg–Landau equation\",\"authors\":\"Xiaolin Li , Xiyong Cui , Shougui Zhang\",\"doi\":\"10.1016/j.cam.2024.116323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A fast element-free Galerkin (EFG) method is proposed in this paper for solving the nonlinear complex Ginzburg–Landau equation. A second-order accurate time semi-discrete system is presented by using the Crank–Nicolson scheme for the temporal discretization, and then a meshless fully discrete system is established by using the EFG method for the spatial discretization. In the proposed EFG method, Nitsche’s technique is used to impose the essential boundary conditions in a weak sense, and the reproducing kernel gradient smoothing integration is used to accelerate the calculation. Theoretical errors for the time semi-discrete system and the fully discrete EFG system are analyzed in detail. Optimal error estimates of the fully discrete Crank–Nicolson EFG method are obtained in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norms. Numerical results validate the theoretical results and the effectiveness of the method.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 116323\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005715\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005715","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Analysis of a Crank–Nicolson fast element-free Galerkin method for the nonlinear complex Ginzburg–Landau equation
A fast element-free Galerkin (EFG) method is proposed in this paper for solving the nonlinear complex Ginzburg–Landau equation. A second-order accurate time semi-discrete system is presented by using the Crank–Nicolson scheme for the temporal discretization, and then a meshless fully discrete system is established by using the EFG method for the spatial discretization. In the proposed EFG method, Nitsche’s technique is used to impose the essential boundary conditions in a weak sense, and the reproducing kernel gradient smoothing integration is used to accelerate the calculation. Theoretical errors for the time semi-discrete system and the fully discrete EFG system are analyzed in detail. Optimal error estimates of the fully discrete Crank–Nicolson EFG method are obtained in both and norms. Numerical results validate the theoretical results and the effectiveness of the method.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.