非线性复杂金兹堡-朗道方程的 Crank-Nicolson 快速无元素 Galerkin 方法分析

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaolin Li , Xiyong Cui , Shougui Zhang
{"title":"非线性复杂金兹堡-朗道方程的 Crank-Nicolson 快速无元素 Galerkin 方法分析","authors":"Xiaolin Li ,&nbsp;Xiyong Cui ,&nbsp;Shougui Zhang","doi":"10.1016/j.cam.2024.116323","DOIUrl":null,"url":null,"abstract":"<div><div>A fast element-free Galerkin (EFG) method is proposed in this paper for solving the nonlinear complex Ginzburg–Landau equation. A second-order accurate time semi-discrete system is presented by using the Crank–Nicolson scheme for the temporal discretization, and then a meshless fully discrete system is established by using the EFG method for the spatial discretization. In the proposed EFG method, Nitsche’s technique is used to impose the essential boundary conditions in a weak sense, and the reproducing kernel gradient smoothing integration is used to accelerate the calculation. Theoretical errors for the time semi-discrete system and the fully discrete EFG system are analyzed in detail. Optimal error estimates of the fully discrete Crank–Nicolson EFG method are obtained in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norms. Numerical results validate the theoretical results and the effectiveness of the method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"457 ","pages":"Article 116323"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a Crank–Nicolson fast element-free Galerkin method for the nonlinear complex Ginzburg–Landau equation\",\"authors\":\"Xiaolin Li ,&nbsp;Xiyong Cui ,&nbsp;Shougui Zhang\",\"doi\":\"10.1016/j.cam.2024.116323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A fast element-free Galerkin (EFG) method is proposed in this paper for solving the nonlinear complex Ginzburg–Landau equation. A second-order accurate time semi-discrete system is presented by using the Crank–Nicolson scheme for the temporal discretization, and then a meshless fully discrete system is established by using the EFG method for the spatial discretization. In the proposed EFG method, Nitsche’s technique is used to impose the essential boundary conditions in a weak sense, and the reproducing kernel gradient smoothing integration is used to accelerate the calculation. Theoretical errors for the time semi-discrete system and the fully discrete EFG system are analyzed in detail. Optimal error estimates of the fully discrete Crank–Nicolson EFG method are obtained in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norms. Numerical results validate the theoretical results and the effectiveness of the method.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 116323\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005715\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005715","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于求解非线性复杂金兹堡-兰道方程的快速无元素伽勒金(EFG)方法。通过使用 Crank-Nicolson 方案进行时间离散化,提出了一个二阶精确时间半离散系统,然后通过使用 EFG 方法进行空间离散化,建立了一个无网格全离散系统。在所提出的 EFG 方法中,使用了 Nitsche 技术来施加弱意义上的基本边界条件,并使用重现核梯度平滑积分来加速计算。详细分析了时间半离散系统和全离散 EFG 系统的理论误差。得到了全离散 Crank-Nicolson EFG 方法在 L2 和 H1 规范下的最佳误差估计值。数值结果验证了理论结果和方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a Crank–Nicolson fast element-free Galerkin method for the nonlinear complex Ginzburg–Landau equation
A fast element-free Galerkin (EFG) method is proposed in this paper for solving the nonlinear complex Ginzburg–Landau equation. A second-order accurate time semi-discrete system is presented by using the Crank–Nicolson scheme for the temporal discretization, and then a meshless fully discrete system is established by using the EFG method for the spatial discretization. In the proposed EFG method, Nitsche’s technique is used to impose the essential boundary conditions in a weak sense, and the reproducing kernel gradient smoothing integration is used to accelerate the calculation. Theoretical errors for the time semi-discrete system and the fully discrete EFG system are analyzed in detail. Optimal error estimates of the fully discrete Crank–Nicolson EFG method are obtained in both L2 and H1 norms. Numerical results validate the theoretical results and the effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信