{"title":"关于双卡德克规范","authors":"Petr Hájek","doi":"10.1016/j.jfa.2024.110698","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>‖</mo><mo>⋅</mo><mo>‖</mo><mo>)</mo></math></span> be a Banach space such that all <span><math><msup><mrow><mi>w</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convergent sequences in the dual unit sphere <span><math><msub><mrow><mi>S</mi></mrow><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msub></math></span> are also norm convergent. Then the weak<sup>⁎</sup> and norm topologies agree on <span><math><msub><mrow><mi>S</mi></mrow><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msub></math></span>. By known results it implies that <em>X</em> has a renorming whose dual is locally uniformly rotund, hence also <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Fréchet smooth. In particular, <em>X</em> is an Asplund space. Our results also lend an alternative proof of the celebrated Josefson-Nissenzweig theorem.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On dual Kadec norms\",\"authors\":\"Petr Hájek\",\"doi\":\"10.1016/j.jfa.2024.110698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>‖</mo><mo>⋅</mo><mo>‖</mo><mo>)</mo></math></span> be a Banach space such that all <span><math><msup><mrow><mi>w</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convergent sequences in the dual unit sphere <span><math><msub><mrow><mi>S</mi></mrow><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msub></math></span> are also norm convergent. Then the weak<sup>⁎</sup> and norm topologies agree on <span><math><msub><mrow><mi>S</mi></mrow><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msub></math></span>. By known results it implies that <em>X</em> has a renorming whose dual is locally uniformly rotund, hence also <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Fréchet smooth. In particular, <em>X</em> is an Asplund space. Our results also lend an alternative proof of the celebrated Josefson-Nissenzweig theorem.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003860\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003860","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设(X,‖⋅‖)是一个巴拿赫空间,其对偶单位球 SX⁎中所有 w⁎ 收敛序列也是规范收敛的。那么弱⁎拓扑和规范拓扑在 SX⁎上是一致的。根据已知结果,这意味着 X 有一个重重整,其对偶是局部均匀旋转的,因此也是 C1-弗雷谢特光滑的。特别是,X 是一个阿斯普朗德空间。我们的结果还为著名的约瑟夫森-尼森茨威格定理提供了另一种证明。
Let be a Banach space such that all -convergent sequences in the dual unit sphere are also norm convergent. Then the weak⁎ and norm topologies agree on . By known results it implies that X has a renorming whose dual is locally uniformly rotund, hence also -Fréchet smooth. In particular, X is an Asplund space. Our results also lend an alternative proof of the celebrated Josefson-Nissenzweig theorem.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis