研究铜底层和 FTO 蚀刻对提高 Cu2O 光电极光电化学性能的影响

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Nur Azlina Adris , Lorna Jeffery Minggu , Khuzaimah Arifin , Rozan Mohamad Yunus , Mohamad Azuwa Mohamed , Mohammad B. Kassim
{"title":"研究铜底层和 FTO 蚀刻对提高 Cu2O 光电极光电化学性能的影响","authors":"Nur Azlina Adris ,&nbsp;Lorna Jeffery Minggu ,&nbsp;Khuzaimah Arifin ,&nbsp;Rozan Mohamad Yunus ,&nbsp;Mohamad Azuwa Mohamed ,&nbsp;Mohammad B. Kassim","doi":"10.1016/j.solmat.2024.113208","DOIUrl":null,"url":null,"abstract":"<div><div>Cuprous oxide (Cu<sub>2</sub>O) exhibits potential as a photoactive material for photoelectrochemical water splitting, owing to its appropriate bandgap, efficient charge carrier separation, and ability to enhance solar-driven hydrogen production. This study investigates the influence of substrate etching, Cu underlayer and Cu<sub>2</sub>O electrodeposition time, and annealing time on enhancing the photoelectrochemical (PEC) performance. Electrodeposition and thermal oxidation techniques were used to fabricate the Cu<sub>2</sub>O/Cu/FTOe-A photocathode. It has been observed that FTO etching improves adhesion, light transmission, and efficiency. A Cu underlayer also impacts the PEC performance, wherein an ideal thickness of Cu leads to enhanced PEC performance. This study also focuses on the annealing time that leads to CuO layers and nanowires forming on the Cu<sub>2</sub>O surface. The structural and chemical changes before and after annealing are confirmed via XRD, XPS, AFM and FESEM analyses. UV–Vis analysis also reveals that the presence of Cu underlayer, FTO etching, and the annealing process affect the electrical properties and light absorption capacities of the Cu<sub>2</sub>O photoelectrode. Electrochemical impedance analysis (EIS) and Mott-Schottky analysis have provided insights into the enhanced charge transfer properties and band bending in the Cu<sub>2</sub>O/Cu/FTOe-A, resulting in enhanced PEC performance. Overall, this study provides significant insights into the understanding and enhancement of Cu<sub>2</sub>O/Cu/FTOe-A photocathodes for potential use in PEC water splitting applications.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113208"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the effect of Cu underlayer and FTO etching towards photoelectrochemical performance enhancement of Cu2O photoelectrode\",\"authors\":\"Nur Azlina Adris ,&nbsp;Lorna Jeffery Minggu ,&nbsp;Khuzaimah Arifin ,&nbsp;Rozan Mohamad Yunus ,&nbsp;Mohamad Azuwa Mohamed ,&nbsp;Mohammad B. Kassim\",\"doi\":\"10.1016/j.solmat.2024.113208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cuprous oxide (Cu<sub>2</sub>O) exhibits potential as a photoactive material for photoelectrochemical water splitting, owing to its appropriate bandgap, efficient charge carrier separation, and ability to enhance solar-driven hydrogen production. This study investigates the influence of substrate etching, Cu underlayer and Cu<sub>2</sub>O electrodeposition time, and annealing time on enhancing the photoelectrochemical (PEC) performance. Electrodeposition and thermal oxidation techniques were used to fabricate the Cu<sub>2</sub>O/Cu/FTOe-A photocathode. It has been observed that FTO etching improves adhesion, light transmission, and efficiency. A Cu underlayer also impacts the PEC performance, wherein an ideal thickness of Cu leads to enhanced PEC performance. This study also focuses on the annealing time that leads to CuO layers and nanowires forming on the Cu<sub>2</sub>O surface. The structural and chemical changes before and after annealing are confirmed via XRD, XPS, AFM and FESEM analyses. UV–Vis analysis also reveals that the presence of Cu underlayer, FTO etching, and the annealing process affect the electrical properties and light absorption capacities of the Cu<sub>2</sub>O photoelectrode. Electrochemical impedance analysis (EIS) and Mott-Schottky analysis have provided insights into the enhanced charge transfer properties and band bending in the Cu<sub>2</sub>O/Cu/FTOe-A, resulting in enhanced PEC performance. Overall, this study provides significant insights into the understanding and enhancement of Cu<sub>2</sub>O/Cu/FTOe-A photocathodes for potential use in PEC water splitting applications.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"278 \",\"pages\":\"Article 113208\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005208\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005208","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

氧化亚铜(Cu2O)具有适当的带隙、高效的电荷载流子分离以及增强太阳能驱动的制氢能力,因此具有作为光电化学水分离的光活性材料的潜力。本研究探讨了基底蚀刻、铜底层和 Cu2O 电沉积时间以及退火时间对提高光电化学(PEC)性能的影响。利用电沉积和热氧化技术制造了 Cu2O/Cu/FTOe-A 阴极。据观察,FTO 蚀刻可提高附着力、透光率和效率。铜底层也会影响 PEC 性能,理想的铜厚度可提高 PEC 性能。本研究还重点关注了导致 Cu2O 表面形成氧化铜层和纳米线的退火时间。通过 XRD、XPS、AFM 和 FESEM 分析证实了退火前后的结构和化学变化。紫外可见光分析还显示,铜底层的存在、FTO 刻蚀和退火过程会影响 Cu2O 光电极的电学特性和光吸收能力。电化学阻抗分析 (EIS) 和 Mott-Schottky 分析深入揭示了 Cu2O/Cu/FTOe-A 中增强的电荷转移特性和带弯曲,从而提高了 PEC 性能。总之,这项研究为了解和提高 Cu2O/Cu/FTOe-A 光电阴极在 PEC 水分离应用中的潜在用途提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the effect of Cu underlayer and FTO etching towards photoelectrochemical performance enhancement of Cu2O photoelectrode

Investigating the effect of Cu underlayer and FTO etching towards photoelectrochemical performance enhancement of Cu2O photoelectrode
Cuprous oxide (Cu2O) exhibits potential as a photoactive material for photoelectrochemical water splitting, owing to its appropriate bandgap, efficient charge carrier separation, and ability to enhance solar-driven hydrogen production. This study investigates the influence of substrate etching, Cu underlayer and Cu2O electrodeposition time, and annealing time on enhancing the photoelectrochemical (PEC) performance. Electrodeposition and thermal oxidation techniques were used to fabricate the Cu2O/Cu/FTOe-A photocathode. It has been observed that FTO etching improves adhesion, light transmission, and efficiency. A Cu underlayer also impacts the PEC performance, wherein an ideal thickness of Cu leads to enhanced PEC performance. This study also focuses on the annealing time that leads to CuO layers and nanowires forming on the Cu2O surface. The structural and chemical changes before and after annealing are confirmed via XRD, XPS, AFM and FESEM analyses. UV–Vis analysis also reveals that the presence of Cu underlayer, FTO etching, and the annealing process affect the electrical properties and light absorption capacities of the Cu2O photoelectrode. Electrochemical impedance analysis (EIS) and Mott-Schottky analysis have provided insights into the enhanced charge transfer properties and band bending in the Cu2O/Cu/FTOe-A, resulting in enhanced PEC performance. Overall, this study provides significant insights into the understanding and enhancement of Cu2O/Cu/FTOe-A photocathodes for potential use in PEC water splitting applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信