Chang Wang , Xueyao Li , Xiaohan Miao , Jingyuan Li , Yong Li , Congbo Song , Zhiwen Yang , Jingyu Qi , Taosheng Jin
{"title":"柴油车排放:剖析多因素对挥发性有机化合物成分浓度变化的影响","authors":"Chang Wang , Xueyao Li , Xiaohan Miao , Jingyuan Li , Yong Li , Congbo Song , Zhiwen Yang , Jingyu Qi , Taosheng Jin","doi":"10.1016/j.uclim.2024.102157","DOIUrl":null,"url":null,"abstract":"<div><div>As emission standards tighten, addressing Volatile Organic Compounds (VOCs) has become more urgent. The VOC emissions from diesel vehicles are underestimated in transportation, emphasizing the need to reexamine their emission characteristics. Our study analyzed four diesel vehicles and found that aromatics and alkanes were the dominant categories of VOCs, which accounted for approximately 24 % and 19 %, respectively. Tetrahydrofuran, acetone, and toluene were identified as the main components of VOCs, accounting for 78 % of the total emissions. Specifically, the implementation of tighter emission standards for diesel vehicles resulted in a reduction in the contribution of alkanes to VOC emissions, while that of aromatics increased notably. As the driving speed increased, emissions of aromatics and Volatile Halogenated Hydrocarbons (VHCs) experienced a decreasing trend. In addition, Selective Catalytic Reduction (SCR) has the significant impact on aromatics and VHCs, while cold and hot starts phases affect aromatic emissions mostly, as confirmed by Criteria Importance Through Intercriteria Correlation (CRITIC) analysis.</div></div>","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"58 ","pages":"Article 102157"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diesel vehicle emissions: Dissecting the multi-factorial effect on variations of VOC-component concentrations\",\"authors\":\"Chang Wang , Xueyao Li , Xiaohan Miao , Jingyuan Li , Yong Li , Congbo Song , Zhiwen Yang , Jingyu Qi , Taosheng Jin\",\"doi\":\"10.1016/j.uclim.2024.102157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As emission standards tighten, addressing Volatile Organic Compounds (VOCs) has become more urgent. The VOC emissions from diesel vehicles are underestimated in transportation, emphasizing the need to reexamine their emission characteristics. Our study analyzed four diesel vehicles and found that aromatics and alkanes were the dominant categories of VOCs, which accounted for approximately 24 % and 19 %, respectively. Tetrahydrofuran, acetone, and toluene were identified as the main components of VOCs, accounting for 78 % of the total emissions. Specifically, the implementation of tighter emission standards for diesel vehicles resulted in a reduction in the contribution of alkanes to VOC emissions, while that of aromatics increased notably. As the driving speed increased, emissions of aromatics and Volatile Halogenated Hydrocarbons (VHCs) experienced a decreasing trend. In addition, Selective Catalytic Reduction (SCR) has the significant impact on aromatics and VHCs, while cold and hot starts phases affect aromatic emissions mostly, as confirmed by Criteria Importance Through Intercriteria Correlation (CRITIC) analysis.</div></div>\",\"PeriodicalId\":48626,\"journal\":{\"name\":\"Urban Climate\",\"volume\":\"58 \",\"pages\":\"Article 102157\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Climate\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212095524003547\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212095524003547","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Diesel vehicle emissions: Dissecting the multi-factorial effect on variations of VOC-component concentrations
As emission standards tighten, addressing Volatile Organic Compounds (VOCs) has become more urgent. The VOC emissions from diesel vehicles are underestimated in transportation, emphasizing the need to reexamine their emission characteristics. Our study analyzed four diesel vehicles and found that aromatics and alkanes were the dominant categories of VOCs, which accounted for approximately 24 % and 19 %, respectively. Tetrahydrofuran, acetone, and toluene were identified as the main components of VOCs, accounting for 78 % of the total emissions. Specifically, the implementation of tighter emission standards for diesel vehicles resulted in a reduction in the contribution of alkanes to VOC emissions, while that of aromatics increased notably. As the driving speed increased, emissions of aromatics and Volatile Halogenated Hydrocarbons (VHCs) experienced a decreasing trend. In addition, Selective Catalytic Reduction (SCR) has the significant impact on aromatics and VHCs, while cold and hot starts phases affect aromatic emissions mostly, as confirmed by Criteria Importance Through Intercriteria Correlation (CRITIC) analysis.
期刊介绍:
Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following:
Urban meteorology and climate[...]
Urban environmental pollution[...]
Adaptation to global change[...]
Urban economic and social issues[...]
Research Approaches[...]