S K Murugesan, Akanksha Rajput, Malladi V Pavan Kumar
{"title":"带惰性的理想三元反应蒸馏塔的分散控制","authors":"S K Murugesan, Akanksha Rajput, Malladi V Pavan Kumar","doi":"10.1016/j.cep.2024.110017","DOIUrl":null,"url":null,"abstract":"<div><div>Decentralized control of an ideal hypothetical ternary reactive distillation column with an inert component is explored. Both composition measurement based and temperature inferential control structures are designed using simple heuristic approaches (two and three-point). The three-point composition control structure is proposed for the example RD column for the first time in this work. Although stable closed loop responses are seen for the throughput changes for all, the two-point structures have failed to achieve tight control of the product purity in the bottoms or purity of inert in the distillate for the inert composition changes due to fixed reflux ratio. The performances of the three-point control structures for the inert composition changes are quite satisfactory due to the indirect manipulation of the reflux ratio. The independent manipulation of the reflux rate and distillate (instead of fixed reflux ratio policy) is an important control decision for the successful regulation of the example RD column.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"205 ","pages":"Article 110017"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized control of ideal ternary reactive distillation column with inert\",\"authors\":\"S K Murugesan, Akanksha Rajput, Malladi V Pavan Kumar\",\"doi\":\"10.1016/j.cep.2024.110017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Decentralized control of an ideal hypothetical ternary reactive distillation column with an inert component is explored. Both composition measurement based and temperature inferential control structures are designed using simple heuristic approaches (two and three-point). The three-point composition control structure is proposed for the example RD column for the first time in this work. Although stable closed loop responses are seen for the throughput changes for all, the two-point structures have failed to achieve tight control of the product purity in the bottoms or purity of inert in the distillate for the inert composition changes due to fixed reflux ratio. The performances of the three-point control structures for the inert composition changes are quite satisfactory due to the indirect manipulation of the reflux ratio. The independent manipulation of the reflux rate and distillate (instead of fixed reflux ratio policy) is an important control decision for the successful regulation of the example RD column.</div></div>\",\"PeriodicalId\":9929,\"journal\":{\"name\":\"Chemical Engineering and Processing - Process Intensification\",\"volume\":\"205 \",\"pages\":\"Article 110017\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering and Processing - Process Intensification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0255270124003556\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124003556","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Decentralized control of ideal ternary reactive distillation column with inert
Decentralized control of an ideal hypothetical ternary reactive distillation column with an inert component is explored. Both composition measurement based and temperature inferential control structures are designed using simple heuristic approaches (two and three-point). The three-point composition control structure is proposed for the example RD column for the first time in this work. Although stable closed loop responses are seen for the throughput changes for all, the two-point structures have failed to achieve tight control of the product purity in the bottoms or purity of inert in the distillate for the inert composition changes due to fixed reflux ratio. The performances of the three-point control structures for the inert composition changes are quite satisfactory due to the indirect manipulation of the reflux ratio. The independent manipulation of the reflux rate and distillate (instead of fixed reflux ratio policy) is an important control decision for the successful regulation of the example RD column.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.