Raghav Chawla , Fakhra Jabeen , Jan Treur , H. Rob Taal , Peter H.M.P. Roelofsma
{"title":"通过网络空间支持风险管理:自适应网络模型模拟人工智能教练效应,引导遵守新生儿医疗规程指南","authors":"Raghav Chawla , Fakhra Jabeen , Jan Treur , H. Rob Taal , Peter H.M.P. Roelofsma","doi":"10.1016/j.cogsys.2024.101290","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, it is shown how second-order adaptive agent-based network models can be used to support a medical team in healthcare institutions to adhere to specific Neonatal Hypoglycemia and Neonatal Hyperbilirubinemia treatment guidelines through the integration of an Artificial Intelligence (AI) Virtual Coach. The proposed AI Coach is designed to provide timely interventions and correct deviations when lapses in the health care practitioner’s internal mental model occur. Through simulating three different scenarios, the internal dynamics of these mental models, adaptive changes of these mental models (learning and forgetting), and the interaction between health care practitioners and the world is shown when: (1) There is perfect adherence to guidelines, (2) There is imperfect adherence to guidelines and (3) There is both perfect and imperfect adherence to guidelines alongside interventions of the AI Coach in the latter case.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"88 ","pages":"Article 101290"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supporting risk management through cyberspace: An adaptive network model simulating AI coach effects by inducing adherence to guidelines in neonatal medical protocols\",\"authors\":\"Raghav Chawla , Fakhra Jabeen , Jan Treur , H. Rob Taal , Peter H.M.P. Roelofsma\",\"doi\":\"10.1016/j.cogsys.2024.101290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, it is shown how second-order adaptive agent-based network models can be used to support a medical team in healthcare institutions to adhere to specific Neonatal Hypoglycemia and Neonatal Hyperbilirubinemia treatment guidelines through the integration of an Artificial Intelligence (AI) Virtual Coach. The proposed AI Coach is designed to provide timely interventions and correct deviations when lapses in the health care practitioner’s internal mental model occur. Through simulating three different scenarios, the internal dynamics of these mental models, adaptive changes of these mental models (learning and forgetting), and the interaction between health care practitioners and the world is shown when: (1) There is perfect adherence to guidelines, (2) There is imperfect adherence to guidelines and (3) There is both perfect and imperfect adherence to guidelines alongside interventions of the AI Coach in the latter case.</div></div>\",\"PeriodicalId\":55242,\"journal\":{\"name\":\"Cognitive Systems Research\",\"volume\":\"88 \",\"pages\":\"Article 101290\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Systems Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389041724000846\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000846","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Supporting risk management through cyberspace: An adaptive network model simulating AI coach effects by inducing adherence to guidelines in neonatal medical protocols
In this article, it is shown how second-order adaptive agent-based network models can be used to support a medical team in healthcare institutions to adhere to specific Neonatal Hypoglycemia and Neonatal Hyperbilirubinemia treatment guidelines through the integration of an Artificial Intelligence (AI) Virtual Coach. The proposed AI Coach is designed to provide timely interventions and correct deviations when lapses in the health care practitioner’s internal mental model occur. Through simulating three different scenarios, the internal dynamics of these mental models, adaptive changes of these mental models (learning and forgetting), and the interaction between health care practitioners and the world is shown when: (1) There is perfect adherence to guidelines, (2) There is imperfect adherence to guidelines and (3) There is both perfect and imperfect adherence to guidelines alongside interventions of the AI Coach in the latter case.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.