Weinan Zhang , Chengyue Sun , Ke Liu , Wenhao Shen , YiYong Wu , Liyong Yao , Qi Zhang , Wei Zhang , Li Wang
{"title":"空间太阳能发电站的技术挑战:超大规模空间太阳能电池阵列系统和空间环境影响","authors":"Weinan Zhang , Chengyue Sun , Ke Liu , Wenhao Shen , YiYong Wu , Liyong Yao , Qi Zhang , Wei Zhang , Li Wang","doi":"10.1016/j.sspwt.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>Space solar power station (SSPS) are important space infrastructure for humans to efficiently utilize solar energy and can effectively reduce the pollution of fossil fuels to the earth’s natural environment. As the energy conversion system of SSPS, solar array is an important unit for the successful service of SSPS. Today, solar arrays represent the standard technology for providing energy for spacecraft, thanks to their high conversion efficiency and reliability/stability in orbit. With the development of solar arrays, many new materials, new photovoltaic devices and new control systems have emerged. Solar arrays are directly exposed to the space environment, and harsh environmental factors can degrade the performance. To ensure the long-term safe in-orbit service of SSPS as well as its ultra-large solar array, these new materials, devices, and control systems must operate certification and evaluation that can be used in space applications. In this review, the development history and research progress of SSPS and the corresponding space solar arrays are summarized and discussed, and the space environmental effects of solar arrays are analyzed at multiple levels (materials, devices, and systems). Finally, in response to the current space environmental effects of the ultra-large solar array used in the SSPS, future development trends and challenges are proposed.</div></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 2","pages":"Pages 69-87"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical challenges of space solar power stations: Ultra-large-scale space solar array systems and space environmental effects\",\"authors\":\"Weinan Zhang , Chengyue Sun , Ke Liu , Wenhao Shen , YiYong Wu , Liyong Yao , Qi Zhang , Wei Zhang , Li Wang\",\"doi\":\"10.1016/j.sspwt.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Space solar power station (SSPS) are important space infrastructure for humans to efficiently utilize solar energy and can effectively reduce the pollution of fossil fuels to the earth’s natural environment. As the energy conversion system of SSPS, solar array is an important unit for the successful service of SSPS. Today, solar arrays represent the standard technology for providing energy for spacecraft, thanks to their high conversion efficiency and reliability/stability in orbit. With the development of solar arrays, many new materials, new photovoltaic devices and new control systems have emerged. Solar arrays are directly exposed to the space environment, and harsh environmental factors can degrade the performance. To ensure the long-term safe in-orbit service of SSPS as well as its ultra-large solar array, these new materials, devices, and control systems must operate certification and evaluation that can be used in space applications. In this review, the development history and research progress of SSPS and the corresponding space solar arrays are summarized and discussed, and the space environmental effects of solar arrays are analyzed at multiple levels (materials, devices, and systems). Finally, in response to the current space environmental effects of the ultra-large solar array used in the SSPS, future development trends and challenges are proposed.</div></div>\",\"PeriodicalId\":101177,\"journal\":{\"name\":\"Space Solar Power and Wireless Transmission\",\"volume\":\"1 2\",\"pages\":\"Pages 69-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Solar Power and Wireless Transmission\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950104024000178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Solar Power and Wireless Transmission","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950104024000178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Technical challenges of space solar power stations: Ultra-large-scale space solar array systems and space environmental effects
Space solar power station (SSPS) are important space infrastructure for humans to efficiently utilize solar energy and can effectively reduce the pollution of fossil fuels to the earth’s natural environment. As the energy conversion system of SSPS, solar array is an important unit for the successful service of SSPS. Today, solar arrays represent the standard technology for providing energy for spacecraft, thanks to their high conversion efficiency and reliability/stability in orbit. With the development of solar arrays, many new materials, new photovoltaic devices and new control systems have emerged. Solar arrays are directly exposed to the space environment, and harsh environmental factors can degrade the performance. To ensure the long-term safe in-orbit service of SSPS as well as its ultra-large solar array, these new materials, devices, and control systems must operate certification and evaluation that can be used in space applications. In this review, the development history and research progress of SSPS and the corresponding space solar arrays are summarized and discussed, and the space environmental effects of solar arrays are analyzed at multiple levels (materials, devices, and systems). Finally, in response to the current space environmental effects of the ultra-large solar array used in the SSPS, future development trends and challenges are proposed.