{"title":"空间太阳能电站光伏阵列重构与全周期最大功率点跟踪技术研究","authors":"Guoning Xu , Shuoyan Nie , Zhenyang Xiong","doi":"10.1016/j.sspwt.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>Space solar power station is an energy system that converts solar energy into electrical energy in the space environment and then transmits it to the space platform or ground using wireless power transmission technology. To improve the power generation and system efficiency of the space solar power station, an adaptive and reconfigurable photovoltaic array with multi-configuration is proposed, which can avoid large attenuation of the output power and efficiency of the photovoltaic array when the photovoltaic modules have a fault occurs or the receive different irradiation intensity. Then, according to the orbit area and light condition of the space solar power station, the operation mode are divided in detail. Furthermore, a novel full-cycle and multi-mode GMPPT (maximum power point tracking) strategy is proposed. Compared to the single mode MPPT, the control strategy has shorter response time, faster convergence and higher tracking accuracy. Through the above research, the output power and photoelectric conversion efficiency of space solar power station can be significantly improved.</div></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 2","pages":"Pages 115-128"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on PV array reconstruction and Full-cycle maximum power point tracking technology of space solar power station\",\"authors\":\"Guoning Xu , Shuoyan Nie , Zhenyang Xiong\",\"doi\":\"10.1016/j.sspwt.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Space solar power station is an energy system that converts solar energy into electrical energy in the space environment and then transmits it to the space platform or ground using wireless power transmission technology. To improve the power generation and system efficiency of the space solar power station, an adaptive and reconfigurable photovoltaic array with multi-configuration is proposed, which can avoid large attenuation of the output power and efficiency of the photovoltaic array when the photovoltaic modules have a fault occurs or the receive different irradiation intensity. Then, according to the orbit area and light condition of the space solar power station, the operation mode are divided in detail. Furthermore, a novel full-cycle and multi-mode GMPPT (maximum power point tracking) strategy is proposed. Compared to the single mode MPPT, the control strategy has shorter response time, faster convergence and higher tracking accuracy. Through the above research, the output power and photoelectric conversion efficiency of space solar power station can be significantly improved.</div></div>\",\"PeriodicalId\":101177,\"journal\":{\"name\":\"Space Solar Power and Wireless Transmission\",\"volume\":\"1 2\",\"pages\":\"Pages 115-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Solar Power and Wireless Transmission\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S295010402400018X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Solar Power and Wireless Transmission","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295010402400018X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on PV array reconstruction and Full-cycle maximum power point tracking technology of space solar power station
Space solar power station is an energy system that converts solar energy into electrical energy in the space environment and then transmits it to the space platform or ground using wireless power transmission technology. To improve the power generation and system efficiency of the space solar power station, an adaptive and reconfigurable photovoltaic array with multi-configuration is proposed, which can avoid large attenuation of the output power and efficiency of the photovoltaic array when the photovoltaic modules have a fault occurs or the receive different irradiation intensity. Then, according to the orbit area and light condition of the space solar power station, the operation mode are divided in detail. Furthermore, a novel full-cycle and multi-mode GMPPT (maximum power point tracking) strategy is proposed. Compared to the single mode MPPT, the control strategy has shorter response time, faster convergence and higher tracking accuracy. Through the above research, the output power and photoelectric conversion efficiency of space solar power station can be significantly improved.