平面张量场的傅立叶断层重建方法

IF 1.2 3区 数学 Q1 MATHEMATICS
David Omogbhe
{"title":"平面张量场的傅立叶断层重建方法","authors":"David Omogbhe","doi":"10.1016/j.jmaa.2024.128928","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the problem of inversion of the X-ray transform for sums of 1-forms and symmetric 2-tensor fields. Such a problem arises after linearization of a related travel time tomography problem, described via Mañé's action potential of the energy level 1/2 for a magnetic flow. In a strictly convex bounded domain in the Euclidean plane, we show when and how to recover simultaneously both unknown 1-tensor and symmetric 2-tensor field uniquely from measurement of radiating flux at the boundary. The approach to reconstruction is based on the Cauchy problem for a Beltrami-like equation associated with <em>A</em>-analytic maps.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128928"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fourier approach to tomographic reconstruction of tensor fields in the plane\",\"authors\":\"David Omogbhe\",\"doi\":\"10.1016/j.jmaa.2024.128928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the problem of inversion of the X-ray transform for sums of 1-forms and symmetric 2-tensor fields. Such a problem arises after linearization of a related travel time tomography problem, described via Mañé's action potential of the energy level 1/2 for a magnetic flow. In a strictly convex bounded domain in the Euclidean plane, we show when and how to recover simultaneously both unknown 1-tensor and symmetric 2-tensor field uniquely from measurement of radiating flux at the boundary. The approach to reconstruction is based on the Cauchy problem for a Beltrami-like equation associated with <em>A</em>-analytic maps.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 128928\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24008503\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008503","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是 1 形式和对称 2 张量场的 X 射线变换的反演问题。这个问题是在相关的旅行时间断层扫描问题线性化之后产生的,该问题通过磁流能级 1/2 的马内作用势来描述。在欧几里得平面的严格凸有界域中,我们展示了何时以及如何通过测量边界的辐射通量同时唯一地恢复未知的 1 张量场和对称 2 张量场。重建方法基于与 A 分析映射相关的贝尔特拉米方程的考奇问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fourier approach to tomographic reconstruction of tensor fields in the plane
We consider the problem of inversion of the X-ray transform for sums of 1-forms and symmetric 2-tensor fields. Such a problem arises after linearization of a related travel time tomography problem, described via Mañé's action potential of the energy level 1/2 for a magnetic flow. In a strictly convex bounded domain in the Euclidean plane, we show when and how to recover simultaneously both unknown 1-tensor and symmetric 2-tensor field uniquely from measurement of radiating flux at the boundary. The approach to reconstruction is based on the Cauchy problem for a Beltrami-like equation associated with A-analytic maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信