关于平面中的尖锐黑森可整性猜想

IF 2.4 2区 数学 Q1 MATHEMATICS
Thialita M. Nascimento, Eduardo V. Teixeira
{"title":"关于平面中的尖锐黑森可整性猜想","authors":"Thialita M. Nascimento,&nbsp;Eduardo V. Teixeira","doi":"10.1016/j.jde.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that if <span><math><mi>u</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> satisfies <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>≤</mo><mn>0</mn></math></span> in <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, in the viscosity sense, for some fully nonlinear <span><math><mo>(</mo><mi>λ</mi><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span>-elliptic operator, then <span><math><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>ε</mi></mrow></msup><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub><mo>)</mo></math></span>, with appropriate estimates, for a sharp exponent <span><math><mi>ε</mi><mo>=</mo><mi>ε</mi><mo>(</mo><mi>λ</mi><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> verifying<span><span><span><math><mfrac><mrow><mn>1.629</mn></mrow><mrow><mfrac><mrow><mi>Λ</mi></mrow><mrow><mi>λ</mi></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></mfrac><mo>&lt;</mo><mi>ε</mi><mo>(</mo><mi>λ</mi><mo>,</mo><mi>Λ</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>Λ</mi></mrow><mrow><mi>λ</mi></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></mfrac><mo>.</mo></math></span></span></span> The upper bound is conjectured to be the optimal one. Thus, the main new information proven in this paper is that the sharp Hessian integrability exponent for viscosity supersolutions in the plane remains <em>at least</em> 81.45% of its upper bound. This greatly improves previous known estimates.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the sharp Hessian integrability conjecture in the plane\",\"authors\":\"Thialita M. Nascimento,&nbsp;Eduardo V. Teixeira\",\"doi\":\"10.1016/j.jde.2024.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that if <span><math><mi>u</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> satisfies <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>≤</mo><mn>0</mn></math></span> in <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, in the viscosity sense, for some fully nonlinear <span><math><mo>(</mo><mi>λ</mi><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span>-elliptic operator, then <span><math><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>ε</mi></mrow></msup><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub><mo>)</mo></math></span>, with appropriate estimates, for a sharp exponent <span><math><mi>ε</mi><mo>=</mo><mi>ε</mi><mo>(</mo><mi>λ</mi><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> verifying<span><span><span><math><mfrac><mrow><mn>1.629</mn></mrow><mrow><mfrac><mrow><mi>Λ</mi></mrow><mrow><mi>λ</mi></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></mfrac><mo>&lt;</mo><mi>ε</mi><mo>(</mo><mi>λ</mi><mo>,</mo><mi>Λ</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>Λ</mi></mrow><mrow><mi>λ</mi></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></mfrac><mo>.</mo></math></span></span></span> The upper bound is conjectured to be the optimal one. Thus, the main new information proven in this paper is that the sharp Hessian integrability exponent for viscosity supersolutions in the plane remains <em>at least</em> 81.45% of its upper bound. This greatly improves previous known estimates.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962400651X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962400651X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果 u∈C0(B1) 在 B1⊂R2 中满足 F(x,D2u)≤0,在粘性意义上,对于某个全非线性(λ,Λ)椭圆算子,则 u∈W2,ε(B1/2) 带有适当的估计值,对于锐指数 ε=ε(λ,Λ) 验证1。629Λλ+1<ε(λ,Λ)≤2Λλ+1.我们猜想这个上限是最优的。因此,本文证明的主要新信息是,平面内粘性超解的尖锐黑森可整性指数至少保持在其上界的 81.45%。这大大改进了之前已知的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the sharp Hessian integrability conjecture in the plane
We prove that if uC0(B1) satisfies F(x,D2u)0 in B1R2, in the viscosity sense, for some fully nonlinear (λ,Λ)-elliptic operator, then uW2,ε(B1/2), with appropriate estimates, for a sharp exponent ε=ε(λ,Λ) verifying1.629Λλ+1<ε(λ,Λ)2Λλ+1. The upper bound is conjectured to be the optimal one. Thus, the main new information proven in this paper is that the sharp Hessian integrability exponent for viscosity supersolutions in the plane remains at least 81.45% of its upper bound. This greatly improves previous known estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信