考虑随时间变化的特性,软土中高速铁路桥梁桩基在相邻附加荷载作用下的侧向行为

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"考虑随时间变化的特性,软土中高速铁路桥梁桩基在相邻附加荷载作用下的侧向行为","authors":"","doi":"10.1016/j.aej.2024.10.044","DOIUrl":null,"url":null,"abstract":"<div><div>The adjacent surcharge caused by improper soil dumping and irregular backfilling poses a huge threat to the safe service of high-speed railway bridge pile foundations in soft soils. In this study, multiple-case field prototype tests including different surcharge distances and loading values and a numerical model embedded with a soft soil material subroutine were carried out to investigate the time-dependent lateral behavior of bridge piles. The time-dependent mechanism of pile-soil interaction was revealed by characterizing the variations of the additional lateral load acting on the pile shaft, the soil-arching stress between piles, and the plastic deformation in the soil around piles. The results show that with increasing load duration, the bending moment and deflection of the pile increase gradually, and their distribution is closely related to the thickness and location of the soft soil layer. Furthermore, the horizontal soil-arching between piles underwent the stages of stabilization, local damage, and plastic flow, in which the passive load acting on the pile side continued to increase until it stabilized, resulting in time-dependent lateral deflection of the pile foundation. Consolidation parameters and pile-soil stiffness ratios also have a significant effect on the time-dependent behavior of pile responses. The conclusions obtained can provide a valuable reference for engineering applications to predict the long-term behavior of bridge piles.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lateral behavior of high-speed railway bridge pile foundation in soft soils under adjacent surcharge loads considering time-dependent characteristics\",\"authors\":\"\",\"doi\":\"10.1016/j.aej.2024.10.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The adjacent surcharge caused by improper soil dumping and irregular backfilling poses a huge threat to the safe service of high-speed railway bridge pile foundations in soft soils. In this study, multiple-case field prototype tests including different surcharge distances and loading values and a numerical model embedded with a soft soil material subroutine were carried out to investigate the time-dependent lateral behavior of bridge piles. The time-dependent mechanism of pile-soil interaction was revealed by characterizing the variations of the additional lateral load acting on the pile shaft, the soil-arching stress between piles, and the plastic deformation in the soil around piles. The results show that with increasing load duration, the bending moment and deflection of the pile increase gradually, and their distribution is closely related to the thickness and location of the soft soil layer. Furthermore, the horizontal soil-arching between piles underwent the stages of stabilization, local damage, and plastic flow, in which the passive load acting on the pile side continued to increase until it stabilized, resulting in time-dependent lateral deflection of the pile foundation. Consolidation parameters and pile-soil stiffness ratios also have a significant effect on the time-dependent behavior of pile responses. The conclusions obtained can provide a valuable reference for engineering applications to predict the long-term behavior of bridge piles.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016824012006\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824012006","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

不当弃土和不规则回填造成的邻近附加荷载对软土中高速铁路桥梁桩基的安全使用构成巨大威胁。本研究通过不同附加荷载距离和荷载值的多案例现场原型试验,以及嵌入软土材料子程序的数值模型,研究了桥梁桩基随时间变化的横向行为。通过分析作用在桩轴上的附加侧向荷载、桩间土拱应力以及桩周围土体塑性变形的变化特征,揭示了桩土相互作用随时间变化的机理。结果表明,随着荷载持续时间的增加,桩的弯矩和挠度逐渐增大,其分布与软土层的厚度和位置密切相关。此外,桩间水平土拱度经历了稳定、局部破坏和塑性流动等阶段,其中作用在桩侧的被动荷载持续增加,直至稳定,从而导致桩基侧向挠度随时间变化。固结参数和桩土刚度比也对随时间变化的桩基响应行为有显著影响。所得结论可为工程应用中预测桥梁桩基的长期行为提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lateral behavior of high-speed railway bridge pile foundation in soft soils under adjacent surcharge loads considering time-dependent characteristics
The adjacent surcharge caused by improper soil dumping and irregular backfilling poses a huge threat to the safe service of high-speed railway bridge pile foundations in soft soils. In this study, multiple-case field prototype tests including different surcharge distances and loading values and a numerical model embedded with a soft soil material subroutine were carried out to investigate the time-dependent lateral behavior of bridge piles. The time-dependent mechanism of pile-soil interaction was revealed by characterizing the variations of the additional lateral load acting on the pile shaft, the soil-arching stress between piles, and the plastic deformation in the soil around piles. The results show that with increasing load duration, the bending moment and deflection of the pile increase gradually, and their distribution is closely related to the thickness and location of the soft soil layer. Furthermore, the horizontal soil-arching between piles underwent the stages of stabilization, local damage, and plastic flow, in which the passive load acting on the pile side continued to increase until it stabilized, resulting in time-dependent lateral deflection of the pile foundation. Consolidation parameters and pile-soil stiffness ratios also have a significant effect on the time-dependent behavior of pile responses. The conclusions obtained can provide a valuable reference for engineering applications to predict the long-term behavior of bridge piles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信