论混合局部和非局部椭圆方程的一些正则特性

IF 2.4 2区 数学 Q1 MATHEMATICS
Xifeng Su , Enrico Valdinoci , Yuanhong Wei , Jiwen Zhang
{"title":"论混合局部和非局部椭圆方程的一些正则特性","authors":"Xifeng Su ,&nbsp;Enrico Valdinoci ,&nbsp;Yuanhong Wei ,&nbsp;Jiwen Zhang","doi":"10.1016/j.jde.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>This article is concerned with “up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity results” about a mixed local-nonlocal nonlinear elliptic equation which is driven by the superposition of Laplacian and fractional Laplacian operators.</div><div>First of all, an estimate on the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> norm of weak solutions is established for more general cases than the ones present in the literature, including here critical nonlinearities.</div><div>We then prove the interior <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity and the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity up to the boundary of weak solutions, which extends previous results by the authors (Su et al., 2022, <span><span>[20]</span></span>), where the nonlinearities considered were of subcritical type.</div><div>In addition, we establish the interior <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity of solutions for all <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity up to the boundary for all <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>, with sharp regularity exponents.</div><div>For further perusal, we also include a strong maximum principle and some properties about the principal eigenvalue.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some regularity properties of mixed local and nonlocal elliptic equations\",\"authors\":\"Xifeng Su ,&nbsp;Enrico Valdinoci ,&nbsp;Yuanhong Wei ,&nbsp;Jiwen Zhang\",\"doi\":\"10.1016/j.jde.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article is concerned with “up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity results” about a mixed local-nonlocal nonlinear elliptic equation which is driven by the superposition of Laplacian and fractional Laplacian operators.</div><div>First of all, an estimate on the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> norm of weak solutions is established for more general cases than the ones present in the literature, including here critical nonlinearities.</div><div>We then prove the interior <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity and the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity up to the boundary of weak solutions, which extends previous results by the authors (Su et al., 2022, <span><span>[20]</span></span>), where the nonlinearities considered were of subcritical type.</div><div>In addition, we establish the interior <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity of solutions for all <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity up to the boundary for all <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>, with sharp regularity exponents.</div><div>For further perusal, we also include a strong maximum principle and some properties about the principal eigenvalue.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006533\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006533","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注一个由拉普拉契算子和分数拉普拉契算子叠加驱动的局部-非局部混合非线性椭圆方程的 "达 C2,α 正则性结果"。首先,我们建立了弱解的 L∞ norm 估计值,它适用于比文献中更普遍的情况,包括这里的临界非线性、此外,我们还建立了所有 s∈(0,1)解的内部 C2,α 规则性,以及所有 s∈(0,12)解的边界 C2,α 规则性,并具有尖锐的规则性指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some regularity properties of mixed local and nonlocal elliptic equations
This article is concerned with “up to C2,α-regularity results” about a mixed local-nonlocal nonlinear elliptic equation which is driven by the superposition of Laplacian and fractional Laplacian operators.
First of all, an estimate on the L norm of weak solutions is established for more general cases than the ones present in the literature, including here critical nonlinearities.
We then prove the interior C1,α-regularity and the C1,α-regularity up to the boundary of weak solutions, which extends previous results by the authors (Su et al., 2022, [20]), where the nonlinearities considered were of subcritical type.
In addition, we establish the interior C2,α-regularity of solutions for all s(0,1) and the C2,α-regularity up to the boundary for all s(0,12), with sharp regularity exponents.
For further perusal, we also include a strong maximum principle and some properties about the principal eigenvalue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信