一般增长条件下非线性霍奇理论中的热流

IF 2.4 2区 数学 Q1 MATHEMATICS
Christoph Hamburger
{"title":"一般增长条件下非线性霍奇理论中的热流","authors":"Christoph Hamburger","doi":"10.1016/j.jde.2024.09.043","DOIUrl":null,"url":null,"abstract":"<div><div>We study the <em>nonlinear Hodge system</em> <span><math><mi>d</mi><mi>ω</mi><mo>=</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mi>ω</mi><mo>=</mo><mn>0</mn></math></span> for an exterior form <em>ω</em> on a compact oriented Riemannian manifold <em>M</em>. Its solutions are called <em>ρ-harmonic forms</em>. Here the <em>ρ</em>-codifferential of <em>ω</em> is defined as <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mi>ω</mi><mo>=</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>δ</mi><mo>(</mo><mi>ρ</mi><mi>ω</mi><mo>)</mo></math></span> with a given positive function <span><math><mi>ρ</mi><mo>=</mo><mi>ρ</mi><mo>(</mo><mo>|</mo><mi>ω</mi><mo>|</mo><mo>)</mo></math></span>.</div><div>We evolve a given closed form <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> by the <em>nonlinear heat flow system</em> <span><math><mover><mrow><mi>ω</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mi>d</mi><msub><mrow><mi>δ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mi>ω</mi></math></span> for a time dependent exterior form <span><math><mi>ω</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> on <em>M</em>. Under an ellipticity condition on the function <em>ρ</em>, we show that the nonlinear heat flow system with initial condition <span><math><mi>ω</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> has a unique solution for all times, which converges to a <em>ρ</em>-harmonic form in the cohomology class of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. This yields a <em>nonlinear Hodge theorem</em> that every cohomology class of <em>M</em> has a unique <em>ρ</em>-harmonic representative.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 531-575"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The heat flow in nonlinear Hodge theory under general growth\",\"authors\":\"Christoph Hamburger\",\"doi\":\"10.1016/j.jde.2024.09.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the <em>nonlinear Hodge system</em> <span><math><mi>d</mi><mi>ω</mi><mo>=</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mi>ω</mi><mo>=</mo><mn>0</mn></math></span> for an exterior form <em>ω</em> on a compact oriented Riemannian manifold <em>M</em>. Its solutions are called <em>ρ-harmonic forms</em>. Here the <em>ρ</em>-codifferential of <em>ω</em> is defined as <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mi>ω</mi><mo>=</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>δ</mi><mo>(</mo><mi>ρ</mi><mi>ω</mi><mo>)</mo></math></span> with a given positive function <span><math><mi>ρ</mi><mo>=</mo><mi>ρ</mi><mo>(</mo><mo>|</mo><mi>ω</mi><mo>|</mo><mo>)</mo></math></span>.</div><div>We evolve a given closed form <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> by the <em>nonlinear heat flow system</em> <span><math><mover><mrow><mi>ω</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mi>d</mi><msub><mrow><mi>δ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mi>ω</mi></math></span> for a time dependent exterior form <span><math><mi>ω</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> on <em>M</em>. Under an ellipticity condition on the function <em>ρ</em>, we show that the nonlinear heat flow system with initial condition <span><math><mi>ω</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> has a unique solution for all times, which converges to a <em>ρ</em>-harmonic form in the cohomology class of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. This yields a <em>nonlinear Hodge theorem</em> that every cohomology class of <em>M</em> has a unique <em>ρ</em>-harmonic representative.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 531-575\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006284\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006284","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究紧凑定向黎曼流形 M 上外部形式 ω 的非线性霍奇系统 dω=δρω=0。这里,ω 的ρ-微分被定义为δρω=ρ-1δ(ρω),其中有给定的正函数ρ=ρ(|ω|)。我们通过非线性热流系统ω˙=dδρω来演化一个给定的封闭形式ω0,该系统为 M 上与时间相关的外部形式ω(x,t)。在函数ρ的椭圆性条件下,我们证明了初始条件为ω(⋅,0)=ω0 的非线性热流系统在所有时间都有唯一解,该解收敛于ω0 的同调类中的ρ谐形式。这就产生了一个非线性霍奇定理,即 M 的每个共构类都有一个唯一的 ρ 谐波代表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The heat flow in nonlinear Hodge theory under general growth
We study the nonlinear Hodge system dω=δρω=0 for an exterior form ω on a compact oriented Riemannian manifold M. Its solutions are called ρ-harmonic forms. Here the ρ-codifferential of ω is defined as δρω=ρ1δ(ρω) with a given positive function ρ=ρ(|ω|).
We evolve a given closed form ω0 by the nonlinear heat flow system ω˙=dδρω for a time dependent exterior form ω(x,t) on M. Under an ellipticity condition on the function ρ, we show that the nonlinear heat flow system with initial condition ω(,0)=ω0 has a unique solution for all times, which converges to a ρ-harmonic form in the cohomology class of ω0. This yields a nonlinear Hodge theorem that every cohomology class of M has a unique ρ-harmonic representative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信