关于具有线性分散性的 mCH-Novikov 组合可积分方程的考奇问题

IF 2.4 2区 数学 Q1 MATHEMATICS
Zhenyu Wan , Ying Wang , Min Zhu
{"title":"关于具有线性分散性的 mCH-Novikov 组合可积分方程的考奇问题","authors":"Zhenyu Wan ,&nbsp;Ying Wang ,&nbsp;Min Zhu","doi":"10.1016/j.jde.2024.09.030","DOIUrl":null,"url":null,"abstract":"<div><div>This paper aims to understand a blow-up mechanism on a family of shallow-water models with linear dispersion, which are linked with the modified Camassa-Holm equation and the Novikov equation. We first demonstrate the local well-posedness of the model equation in Besov spaces. Our blow-up analysis begins with two cases where the first case is <span><math><mn>2</mn><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>3</mn><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≠</mo><mn>0</mn></math></span> and then we deduce the results on the curvature blow-up in finite time. To overcome the lack of conservation in the functional due to weak linear dispersion, we can determine a suitable alternative via a slight modification to conserved quantity <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><mi>u</mi><mo>]</mo></math></span> (see <span><span>Lemma 4.1</span></span>). Furthermore, we explore the formation of singularities in another case when nonlocal terms are absent. Lastly, we investigate the Gevrey regularity and analyticity of solutions for Cauchy problem within a specified range of Gevrey-Sobolev spaces by employing the generalized Ovsyannikov theorem and study the continuity of the data-to-solution mapping.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 727-767"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Cauchy problem for a combined mCH-Novikov integrable equation with linear dispersion\",\"authors\":\"Zhenyu Wan ,&nbsp;Ying Wang ,&nbsp;Min Zhu\",\"doi\":\"10.1016/j.jde.2024.09.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper aims to understand a blow-up mechanism on a family of shallow-water models with linear dispersion, which are linked with the modified Camassa-Holm equation and the Novikov equation. We first demonstrate the local well-posedness of the model equation in Besov spaces. Our blow-up analysis begins with two cases where the first case is <span><math><mn>2</mn><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>3</mn><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≠</mo><mn>0</mn></math></span> and then we deduce the results on the curvature blow-up in finite time. To overcome the lack of conservation in the functional due to weak linear dispersion, we can determine a suitable alternative via a slight modification to conserved quantity <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><mi>u</mi><mo>]</mo></math></span> (see <span><span>Lemma 4.1</span></span>). Furthermore, we explore the formation of singularities in another case when nonlocal terms are absent. Lastly, we investigate the Gevrey regularity and analyticity of solutions for Cauchy problem within a specified range of Gevrey-Sobolev spaces by employing the generalized Ovsyannikov theorem and study the continuity of the data-to-solution mapping.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 727-767\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006168\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006168","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在了解具有线性弥散的浅水模型系列的炸裂机制,这些模型与修正的卡马萨-霍尔姆方程和诺维科夫方程相关联。我们首先证明了模型方程在 Besov 空间中的局部好求解性。我们的膨胀分析从两种情况开始,第一种情况是 2k1+3k2≠0,然后我们推导出有限时间内曲率膨胀的结果。为了克服弱线性色散导致的函数不守恒问题,我们可以通过对守恒量 H2[u] 稍作修改来确定一个合适的替代方案(见 Lemma 4.1)。此外,我们还探讨了在非局部项缺失的另一种情况下奇点的形成。最后,我们利用广义奥夫谢尼科夫定理,研究了在指定范围的 Gevrey-Sobolev 空间内 Cauchy 问题解的 Gevrey 正则性和解析性,并研究了数据到解映射的连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Cauchy problem for a combined mCH-Novikov integrable equation with linear dispersion
This paper aims to understand a blow-up mechanism on a family of shallow-water models with linear dispersion, which are linked with the modified Camassa-Holm equation and the Novikov equation. We first demonstrate the local well-posedness of the model equation in Besov spaces. Our blow-up analysis begins with two cases where the first case is 2k1+3k20 and then we deduce the results on the curvature blow-up in finite time. To overcome the lack of conservation in the functional due to weak linear dispersion, we can determine a suitable alternative via a slight modification to conserved quantity H2[u] (see Lemma 4.1). Furthermore, we explore the formation of singularities in another case when nonlocal terms are absent. Lastly, we investigate the Gevrey regularity and analyticity of solutions for Cauchy problem within a specified range of Gevrey-Sobolev spaces by employing the generalized Ovsyannikov theorem and study the continuity of the data-to-solution mapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信